

Aluminum electrolytic capacitors

Single-ended capacitors

Series/Type: B43858

Date: December 2010

© EPCOS AG 2011. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Single-ended capacitors

High ripple current

105 °C

Long-life grade capacitors for electronic ballasts

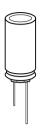
Applications

- Electronic ballasts
- Power supplies

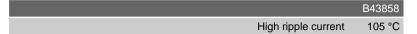
Features

- High ripple current capability at high frequency
- Long useful life
- RoHS-compatible

Construction


- Radial leads
- Charge-discharge proof, polar
- Aluminum case with insulating sleeve
- Minus pole marking on the insulating sleeve
- Case with safety vent

Delivery mode

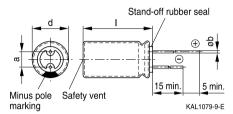

Terminal configurations and packing:

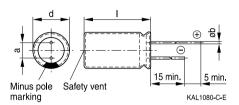
- Bulk
- Taped, Ammo pack
- Cut (see chapter "Single-ended Taping, packing and lead configurations, Cut leads (Chapter B)")
- Kinked (see chapter "Single-ended Taping, packing and lead configurations, Kinked leads (Chapter B)")
- PAPR (protection against polarity reversal): crimped leads, J leads, bent leads

Refer to chapter "Single-ended capacitors Taping, packing and lead configurations" for further details.

Specifications and characteristics in brief

$ \begin{array}{llllllllllllllllllllllllllllllllllll$										
Rated capacitance C_R Capacitance tolerance $\pm 20\%$ M	Rated voltage V _R	160 4	50 V DC							
Capacitance tolerance $ \begin{array}{c} \pm 20\% M \\ \\ \text{Dissipation factor tan d} \\ (20 ^{\circ}\text{C}, 120 \text{Hz}) \\ \text{V}_R \$ 350 \text{V DC: tan d (max.)} = 0.20 \\ \text{V}_R \$ 400 \text{V DC: tan d (max.)} = 0.24 \\ \\ \text{Leakage current I}_{leak} \\ (20 ^{\circ}\text{C}, 5 \text{min}) \\ \\ \text{Self-inductance ESL} \\ \hline \\ \text{Diameter (mm)} \\ \text{ESL (nH)} \\ \hline \\ \text{ESL (nH)} \\ \hline \\ \text{20} \\ \hline \\ \text{26} \\ \hline \\ \text{34} \\ \hline \\ \text{38} \\ \hline \\ \text{Useful life} \\ \\ 105 ^{\circ}\text{C; V}_R \text{I}_{AC,R} \\ \text{40 } ^{\circ}\text{C; V}_R \text{I}_{AC,R} \\ \text{40 } ^{\circ}\text{C; V}_R \text{I}_{AC,R} \\ \text{40 } ^{\circ}\text{C; V}_R \text{I}_{AC,R} \\ \text{5000 h} \\ \text{Notation resistance test} \\ \hline \\ \text{105 } ^{\circ}\text{C; V}_R \\ \hline \\ \text{106 } \\ \hline \\ \text{107 } \\ \text{107 }$	Surge voltage V _S	1.1 V _R								
Dissipation factor tan d (20 °C, 120 Hz)	Rated capacitance C _R	2.2 33	80 μF							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Capacitance tolerance	±20%	-20% M							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dissipation factor tan d	V _R £ 350	V DC: tan d (r	max.) = 0.20)					
	(20 °C, 120 Hz)	V _R ³ 400	V DC: tan d (r	max.) = 0.24	1					
	- Ioun	I _{leak} = 0.	$03 \mu\text{A} \cdot \left(\frac{\text{C}_{\text{R}}}{\mu\text{F}}\right)$	V _R) + 15 μΑ	4					
Useful life 105 °C; V_R ; $I_{AC,R}$ > 5000 h 40 °C; V_R ; 1.6 $I_{AC,R}$ > 400000 h Requirements $DC/C \pounds \pm 35\% \text{ of initial value}$ $\tan d \pounds 3 \text{ times initial specified limit}$ Voltage endurance test 105 °C; V_R 5000 h Post test requirements $DC/C \pounds \pm 25\% \text{ of initial value}$ $\tan d \pounds 2 \text{ times initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test $I_{leak} \pounds \text{ initial specified limit}$ Vibration resistance test	Self-inductance ESL	Diamete	r (mm)	£ 12.5	16	18	20			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		ESL (nH)	20	26	34	38			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Useful life				1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105 °C; V _R ; I _{AC.R}	> 5000 h	1							
$tan \ d \qquad \pounds \ 3 \ times \ initial \ specified \ limit$ $Voltage \ endurance \ test$ $105 \ ^{\circ}C; \ V_R \qquad 5000 \ h$ $Post \ test \ requirements \qquad DC/C \qquad \pounds \ \pm 25\% \ of \ initial \ value$ $tan \ d \qquad \pounds \ 2 \ times \ initial \ specified \ limit$ $I_{leak} \qquad \pounds \ initial \ specified \ limit$ $Vibration \ resistance \ test$ $To \ IEC \ 60068-2-6, \ test \ Fc:$ $Frequency \ range \ 10 \ Hz \ \ 2 \ kHz, \ displacement \ amplitude \ 1.5 \ mm, \ acceleration \ max. \ 20 \ g, \ duration \ 3 \ ^{\circ} \ 2 \ h.$ $Capacitor \ rigidly \ clamped \ by \ the \ aluminum \ case.$ $IEC \ climatic \ category$ $To \ IEC \ 60068-1:$ $V_R \ \pounds \ 250 \ V: \ 40/105/56 \ (\ 40 \ ^{\circ}C/+105 \ ^{\circ}C/56 \ days \ damp \ heat \ test)$ $V_R \ ^{\circ} \ 3 \ 350 \ V: \ 25/105/56 \ (\ 25 \ ^{\circ}C/+105 \ ^{\circ}C/56 \ days \ damp \ heat \ test)$	40 °C; V _R ; 1.6 I _{AC,R}	> 40000	0 h							
$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	Requirements	DC/C	£ ±35% of ini	tial value						
Voltage endurance test 105 °C; V_R 5000 h Post test requirements DC/C £ ±25% of initial value tan d £ 2 times initial specified limit I_{leak} £ initial specified limit Vibration resistance test $To IEC 60068-2-6$, test Fc: Frequency range 10 Hz 2 kHz, displacement amplitude 1.5 mm, acceleration max. 20 g, duration 3 ´ 2 h. Capacitor rigidly clamped by the aluminum case. IEC climatic category $To IEC 60068-1$: $V_R £ 250 V: 40/105/56$ ($V_R £ 250 V: 40/105/56$		tan d	£3 times initi	ial specified	limit					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		I _{leak}	£ initial speci	fied limit						
Post test requirements $ \begin{array}{c} DC/C & \pounds \pm 25\% \text{ of initial value} \\ & \tan d & \pounds 2 \text{ times initial specified limit} \\ & I_{l_{eak}} & \pounds \text{ initial specified limit} \\ \hline \\ Vibration \text{ resistance test} \\ & To IEC 60068-2-6, \text{ test Fc:} \\ & \text{Frequency range 10 Hz 2 kHz, displacement amplitude 1.5 mm, acceleration max. 20 g, duration 3 \' 2 h.} \\ & \text{Capacitor rigidly clamped by the aluminum case.} \\ \hline \\ IEC \text{ climatic category} \\ & V_R \pounds 250 \text{ V: } 40/105/56 \text{ (} 40 \text{ °C/+105 °C/56 days damp heat test)} \\ & V_R \$ 350 \text{ V: } 25/105/56 \text{ (} 25 \text{ °C/+105 °C/56 days damp heat test)} \\ \hline \end{array} $	Voltage endurance test									
$tan \ d \qquad \pounds \ 2 \ times \ initial \ specified \ limit$ $I_{leak} \qquad \pounds \ initial \ specified \ limit$ $Vibration \ resistance \ test$ $To \ IEC \ 60068-2-6, \ test \ Fc:$ $Frequency \ range \ 10 \ Hz \ \ 2 \ kHz, \ displacement \ amplitude \ 1.5 \ mm, \ acceleration \ max. \ 20 \ g, \ duration \ 3 \ \ 2 \ h.$ $Capacitor \ rigidly \ clamped \ by \ the \ aluminum \ case.$ $IEC \ climatic \ category$ $To \ IEC \ 60068-1:$ $V_R \ \pounds \ 250 \ V: \ 40/105/56 \ (\ 40 \ ^C/+105 \ ^C/56 \ days \ damp \ heat \ test)$ $V_R \ 3 \ 350 \ V: \ 25/105/56 \ (\ 25 \ ^C/+105 \ ^C/56 \ days \ damp \ heat \ test)$	105 °C; V _R	5000 h								
$\label{eq:leak_problem} I_{leak} \qquad \text{\pounds initial specified limit} \\ \begin{tabular}{ll} Vibration resistance test & E initial specified limit & T o IEC 60068-2-6, test Fc: & Frequency range 10 Hz 2 kHz, displacement amplitude 1.5 mm, acceleration max. 20 g, duration 3 ^{'} 2 h. Capacitor rigidly clamped by the aluminum case. \begin{tabular}{ll} IEC climatic category & T o IEC 60068-1: & $V_R \pounds 250 \ V: 40/105/56 \ (& 40 \ ^{\circ}C/+105 \ ^{\circ}C/56 \ days \ damp \ heat \ test) \\ V_R \ ^{\circ} \ 350 \ V: 25/105/56 \ (& 25 \ ^{\circ}C/+105 \ ^{\circ}C/56 \ days \ damp \ heat \ test) \\ \end{tabular}$	Post test requirements	DC/C	£ ±25% of ini	itial value						
$\begin{tabular}{lll} \hline Vibration resistance test & To IEC 60068-2-6, test Fc: \\ Frequency range 10 Hz 2 kHz, displacement amplitude 1.5 mm, \\ acceleration max. 20 g, duration 3 ^{'} 2 h. $		tan d	£2 times init	ial specified	limit					
Frequency range 10 Hz 2 kHz, displacement amplitude 1.5 mm, acceleration max. 20 g, duration 3 $^{\prime}$ 2 h. Capacitor rigidly clamped by the aluminum case. IEC climatic category To IEC 60068-1: $V_{R} \pounds 250 V: 40/105/56 (\ 40 ^{\circ}\text{C}/+105 ^{\circ}\text{C}/56 \text{days damp heat test}) \\ V_{R} ^{\circ} 350 V: 25/105/56 (\ 25 ^{\circ}\text{C}/+105 ^{\circ}\text{C}/56 \text{days damp heat test})$		I _{leak}	£ initial speci	fied limit						
acceleration max. 20 g, duration 3 $^{\circ}$ 2 h. Capacitor rigidly clamped by the aluminum case. IEC climatic category To IEC 60068-1: $V_{R} \pounds 250 V: 40/105/56 (40 ^{\circ}\text{C/+}105 ^{\circ}\text{C/56} \text{days} \text{damp heat test)}$ $V_{R} ^{\circ} 350 V: 25/105/56 (25 ^{\circ}\text{C/+}105 ^{\circ}\text{C/56} \text{days} \text{damp heat test)}$	Vibration resistance test	To IEC 6	60068-2-6, test	Fc:						
Capacitor rigidly clamped by the aluminum case. IEC climatic category To IEC 60068-1: $V_R \pounds 250 V: 40/105/56 (\ 40 ^\circ\text{C/+105 } ^\circ\text{C/56 } \text{days } \text{damp heat test)} $ $V_R ^3 350 V: 25/105/56 (\ 25 ^\circ\text{C/+105 } ^\circ\text{C/56 } \text{days } \text{damp heat test)}$		Frequen	cy range 10 H	z 2 kHz, d	displacemen	t amplitude	1.5 mm,			
To IEC 60068-1:		accelera	tion max. 20 g	, duration 3	´ 2 h.					
V_R £ 250 V: 40/105/56 (40 °C/+105 °C/56 days damp heat test) V_R 3 350 V: 25/105/56 (25 °C/+105 °C/56 days damp heat test)		Capacitor rigidly clamped by the aluminum case.								
V _R ³ 350 V: 25/105/56 (25 °C/+105 °C/56 days damp heat test)	IEC climatic category									
				•	05 °C/56 da	ys damp he	at test)			
Sectional specification IEC 60384-4		V _R ³ 350	V: 25/105/56	(25 °C/+1	05 °C/56 da	ys damp he	at test)			
	Sectional specification	IEC 603	84-4							




High ripple current 105 °C

Dimensional drawings

With stand-off rubber seal Diameters (mm): 10, 12.5, 16, 18

With flat rubber seal Diameter (mm): 20

Dimensions and weights

Dimensions (mm)			Approx. weight
d +0.5	1	a ±0.5	b	g
10	12.5 +1.0	5.0	0.60 ±0.05	1.6
10	16 +1.0	5.0	0.60 ±0.05	1.9
10	20 +2.0	5.0	0.60 ±0.05	2.6
12.5	20 +2.0	5.0	0.60 ±0.05	3.6
12.5	25 +2.0	5.0	0.60 ±0.05	4.5
16	20 +2.0	7.5	0.80 ±0.05	5.5
16	25 +2.0	7.5	0.80 ±0.05	7.5
16	31.5 +2.0	7.5	0.80 ±0.05	7.8
18	31.5 +2.0	7.5	0.80 ±0.1	11.0
18	35 +2.0	7.5	0.80 ±0.1	13.0
18	40 +2.0	7.5	0.80 ±0.1	16.0
20	35 +2.0	10.0	1.0 ±0.1	18.0
20	40 +2.0	10.0	1.0 ±0.1	20.0

B43858 High ripple current 105 °C

Overview of available types

V _R (V DC)	160	200	250	350	400	450
	Case dimens	sions d´l (mm	n)			
C _R (mF)						
2.2				10 ′ 12.5	10 ′ 12.5	10 ′ 12.5
3.3				10 ′ 16	10 ′ 16	10 ′ 16
4.7				10 ′ 16	10 ′ 16	10 ′ 16
6.8				10 ′ 16	10 ′ 16	10 ′ 20
10		10 ′ 16	10 ′ 16	10 ′ 20	10 ′ 20	12.5 ′ 20
22	10 ′ 16	10 ′ 16	10 ′ 20	12.5 ′ 25	12.5 ′ 25	16 ´ 25
33	10 ´ 20	10 ´ 20	12.5 ´ 20	16 ´ 20	16 ´ 25	16 ′ 31.5
47	12.5 ´ 20	12.5 ′ 20	12.5 ′ 25	16 ′ 31.5	16 ′ 31.5	18 ′ 31.5
68	12.5 ´ 25	16 ´ 20	16 ´ 25	18 ′ 31.5	18 ′ 40	18 ′ 40
100	16 ´ 25	16 ´ 25	16 ′ 31.5	18 ′ 40	20 ′ 40	
220	18 ′ 31.5	18 ′ 35	18 ′ 40			
330	20 ′ 35					

Other voltage and capacitance ratings are available upon request.

High ripple current 105 °C

Technical data and ordering codes

	C dimi	T i	T.	Ondonino a codo
C _R	Case dimensions	I _{AC,R}	I _{AC,max}	Ordering code
120 Hz	d´l	100 kHz	100 kHz	(composition see below)
20 °C	mm	105 °C	85 °C	
мF		mA	mA	
$V_R = 160 \text{ V}$	DC			
22	10 ´ 16	420	714	B43858C1226M***
33	10 ′ 20	540	918	B43858C1336M***
47	12.5 ´ 20	650	1105	B43858C1476M***
68	12.5 ′ 25	900	1530	B43858C1686M***
100	16 ´ 25	1100	1870	B43858C1107M***
220	18 ′ 31.5	1320	2244	B43858C1227M***
330	20 ′ 35	1800	3060	B43858C1337M***
$V_{R} = 200 \text{ V}$	DC			
10	10 ′ 16	200	340	B43858C2106M***
22	10 ´ 16	470	799	B43858C2226M***
33	10 ′ 20	500	850	B43858C2336M***
47	12.5 ′ 20	780	1326	B43858C2476M***
68	16 ´ 20	850	1445	B43858C2686M***
100	16 ´ 25	1250	2125	B43858C2107M***
220	18 ´ 35	1390	2363	B43858C2227M***
$V_R = 250 \text{ V}$	DC			
10	10 ′ 16	280	476	B43858H2106M***
22	10 ′ 20	510	867	B43858H2226M***
33	12.5 ´ 20	600	1020	B43858H2336M***
47	12.5 ′ 25	700	1190	B43858H2476M***
68	16 ′ 25	1150	1955	B43858H2686M***
100	16 ´ 31.5	1350	2295	B43858H2107M***
220	18 ′ 40	1460	2482	B43858H2227M***

Composition of ordering code

*** = Version

000 = for standard leads, bulk

001 = for kinked leads, bulk (from d´l = 10 ´ 20 mm to 18 ´ 40 mm)

002 = for cut leads, bulk

003 = for crimped leads, blister (from d´l = 16 ´20 mm to 20 ´40 mm)

004 = for J leads, blister (from d ' I = 10 ' 12.5 mm to 16 ' 31.5 mm)

008 = for taped leads, Ammo pack, lead spacing F = 5 mm (from d ' l = 10 ' 12.5 mm to 12.5 ' 25 mm)

009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d $^{'}$ I = 16 $^{'}$ 20 ... 16 $^{'}$ 31.5 mm and 18 $^{'}$ 25 ... 18 $^{'}$ 31.5 mm)

012 = for bent 90° leads, blister (for Æ16 and 18 mm)

High ripple current

105 °C

Technical data and ordering codes

$\overline{C_R}$	Case dimensions	1	1	Ordering code
120 Hz	d´ l	I _{AC,R} 100 kHz	I _{AC,max} 100 kHz	(composition see below)
20 °C		105 °C	85 °C	(composition see below)
	mm			
mF		mA	mA	
$V_{R} = 350 \text{ V}$	DC .			
2.2	10 ´ 12.5	100	170	B43858C4225M***
3.3	10 ′ 16	130	221	B43858C4335M***
4.7	10 ′ 16	180	306	B43858C4475M***
6.8	10 ′ 16	220	374	B43858C4685M***
10	10 ′ 20	300	510	B43858C4106M***
22	12.5 ′ 25	560	952	B43858C4226M***
33	16 ´ 20	580	986	B43858C4336M***
47	16 ´ 31.5	1000	1700	B43858C4476M***
68	18 ´ 31.5	1200	2040	B43858C4686M***
100	18 ´ 40	1450	2465	B43858C4107M***
$V_{R} = 400 \text{ V}$	DC			
2.2	10 ′ 12.5	100	170	B43858C9225M***
3.3	10 ´ 16	130	221	B43858C9335M***
4.7	10 ′ 16	180	306	B43858C9475M***
6.8	10 ′ 16	270	459	B43858C9685M***
10	10 ′ 20	300	510	B43858C9106M***
22	12.5 ′ 25	560	952	B43858C9226M***
33	16 ´ 25	720	1224	B43858C9336M***
47	16 ´ 31.5	980	1666	B43858C9476M***
68	18 ′ 40	1300	2210	B43858C9686M***
100	20 ′ 40	1550	2635	B43858C9107M***

Composition of ordering code

*** = Version

000 = for standard leads, bulk

001 = for kinked leads, bulk (from d $^{\prime}$ I = 10 $^{\prime}$ 20 mm to 18 $^{\prime}$ 40 mm)

002 = for cut leads, bulk

003 = for crimped leads, blister (from d´l = 16 ´20 mm to 20 ´40 mm)

004 = for J leads, blister (from d $^{\prime}$ I = 10 $^{\prime}$ 12.5 mm to 16 $^{\prime}$ 31.5 mm)

008 = for taped leads, Ammo pack, lead spacing F = 5 mm (from d´l = 10 ´12.5 mm to 12.5 ´25 mm)

009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d $^{'}$ I = 16 $^{'}$ 20 ... 16 $^{'}$ 31.5 mm and 18 $^{'}$ 25 ... 18 $^{'}$ 31.5 mm)

012 = for bent 90° leads, blister (for Æ16 and 18 mm)

High ripple current 105 °C

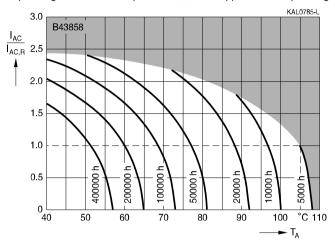
Technical data and ordering codes

_	Case dimensions	l ı	l i	Ordering and
C_R		I _{AC,R}	I _{AC,max}	Ordering code
120 Hz	d´l	100 kHz	100 kHz	(composition see below)
20 °C	mm	105 °C	85 °C	
mF		mA	mA	
$V_R = 450 \text{ V}$	DC			
2.2	10 ′ 12.5	100	170	B43858C5225M***
3.3	10 ′ 16	130	221	B43858C5335M***
4.7	10 ′ 16	180	306	B43858C5475M***
6.8	10 ′ 20	270	459	B43858C5685M***
10	12.5 ´ 20	300	510	B43858C5106M***
22	16 ´ 25	600	1020	B43858C5226M***
33	16 ′ 31.5	780	1326	B43858C5336M***
47	18 ′ 31.5	980	1666	B43858C5476M***
68	18 ′ 40	1350	2295	B43858C5686M***

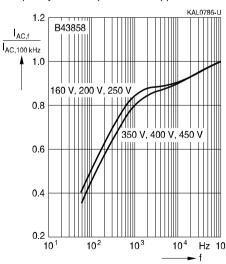
Composition of ordering code

*** = Version

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (from d ' I = 10 ' 20 mm to 18 ' 40 mm)
- 002 = for cut leads, bulk
- 003 = for crimped leads, blister (from d´l = 16 ´20 mm to 20 ´40 mm)
- 004 = for J leads, blister (from d ' l = 10 ' 12.5 mm to 16 ' 31.5 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5 mm (from d´l = 10´12.5 mm to 12.5´25 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d $^{\prime}$ I = 16 $^{\prime}$ 20 ... 16 $^{\prime}$ 31.5 mm and 18 $^{\prime}$ 25 ... 18 $^{\prime}$ 31.5 mm)
- 012 = for bent 90° leads, blister (for Æ16 and 18 mm)



High ripple current 105 °C


B43858

Useful life depending on ambient temperature T_A under ripple current operating conditions $^{1)}$

Frequency factor of permissible ripple current I

AC versus frequency f

Refer to chapter "General technical information, 5.3 Calculation of useful life" for an explanation on how to interpret the useful life graphs.

High ripple current 105 °C

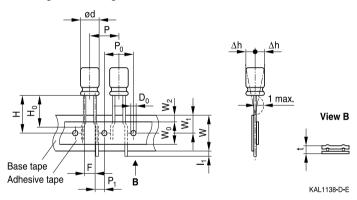
Taping, packing and lead configurations

Taping

Single-ended capacitors are available taped in Ammo pack from diameter 4 to 18 mm as follows:

Lead spacing $F = 2.0 \text{ mm} (\cancel{E} d = 4 \dots 5 \text{ mm})$

Lead spacing F = 2.5 mm (Æ d = 4 ... 6.3 mm)


Lead spacing F = 3.5 mm (Æd = 8 mm)

Lead spacing F = 5.0 mm (Æd = 4 ... 12.5 mm)

Lead spacing F = 7.5 mm (Æd = 16 ... 18 mm).

Lead spacing 2.0 mm ($\cancel{E}d = 4 \dots 5 \text{ mm}$)

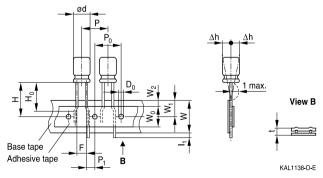
Last 3 digits of ordering code: 016

Dimensions in mm

Æd	F	Н	W	W_0	W_1	W_2	Р	P ₀	P ₁	I ₁	t	Dh	D_0
4 5	2.0	18.5	18.0	7.0	9.0	3.0	12.7	12.7	5.10	1.0	0.7	1	4.0
	+0.8 0.2	±0.75	±0.5	min.	±0.5	max.	±1.0	±0.3	±0.7	max.	±0.2	±1.0	±0.2

High ripple current

105 °C


Lead spacing 2.5 mm ($\cancel{E}d = 4 \dots 6.3$ mm) Last 3 digits of ordering code: 007

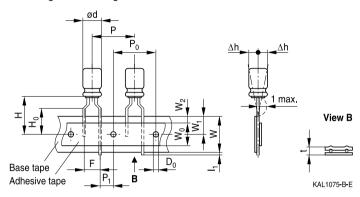
Dimensions in mm

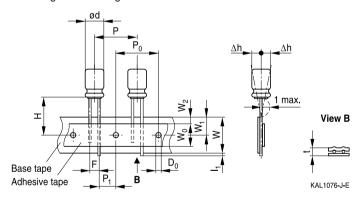
Æd	F	Н	W	W_0	W_1	W_2	H ₀	Р	P ₀	P ₁	I ₁	t	Dh	D ₀
4 6.3	2.5	18.5	18.0	5.5	9.0	1.5	16.0	12.7	12.7	5.1	1.0	0.7	1.0	4.0
Toler-	+0.8	.0.75	.0.5	min	±0.5	may	.0.5	.10	.0.2	.0.5	may	.0.2	may	.0.2
rance	0.2	±0.75	±0.5	1111111.	±0.5	IIIax.	±0.5	±1.0	±0.2	±0.5	IIIax.	±0.2	max.	±0.2

Lead spacing 3.5 mm (Æd = 8 mm) Last 3 digits of ordering code: 006

Dimensions in mm

Æd	F	Н	W	W_0	W_1	W_2	Р	P ₀	P ₁	I ₁	t	Dh	D_0
8	3.5	18.5	18.0	10	9.0	3.0	12.7	12.7	4.6	1.0	0.7	1.0	4.0
Toler- ance	+0.8	.1.0	.0.5	min	.0.5	may	.10	.0.2	.0.6	may	.0.2	may	.0.2
ance	0.2	±1.0	±0.5	111111.	±0.5	IIIax.	±1.0	±0.3	±0.6	IIIax.	±0.2	IIIax.	±0.2

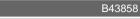

Leads can also run straight through the taping area. Taping is available up to dimensions d $^{\prime}$ I = 8 $^{\prime}$ 15 mm.



High ripple current 105 °C

Lead spacing 5.0 mm (Æd = 4 ... 8 mm) Last 3 digits of ordering code: 008

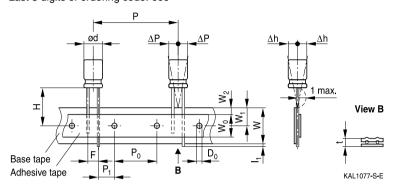
Lead spacing 5.0 mm (Æd = 10 ... 12.5 mm) Last 3 digits of ordering code: 008


Dimensions in mm

Æd	F	Н	W	W_0	W_1	W_2	H _o	Р	P_0	P ₁	I ₁	t	Dh	D ₀
4 6.3	5.0	18.5	18.0	5.5	9.0	1.5	16.0	12.7	12.7	3.85	1.0	0.6	1.0	4.0
8		20.0		10.0			16.0	12.7	12.7	3.85				
10	5.0	19.0	18.0	12.5	9.0	1.5		12.7	12.7	3.85	1.0	0.6	1.0	4.0
12.5		19.0		12.5				15.0	15.0	5.0				
Toler- ance	+0.8 0.2	±0.75	±0.5	min.	±0.5	max.	±0.5	±1.0	±0.2	±0.5	max.	+0.3 0.2	max.	±0.2

Taping is available up to dimensions d ' I = 12.5 ' 25 mm.

Taping is not available for d´l=8´20 mm.



High ripple current 105 °C

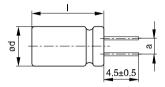
Lead spacing 7.5 mm (Æd = 16 ...18 mm) Last 3 digits of ordering code: 009

Dimensions in mm

Æd	F	Н	W	W_0	W ₁	W_2	Р	P ₀	P ₁	I ₁	t	DP	Dh	D ₀
16	7.5	18.5	10.0	10 5	0.0	1 5	20.0	15.0	2.75	1.0	0.7	0	0	4.0
18	7.5	16.5	10.0	12.3	9.0	1.5	30.0	15.0	3.75	1.0	0.7	U	U	4.0
Toler- ance	±0.8	0.5 +0.75	±0.5	min.	±0.5	max.	±1.0	±0.2	±0.5	max.	±0.2	±1.0	±1.0	±0.2

Taping is available up to dimensions d $^{\prime}$ I = 16 $^{\prime}$ 31.5 mm and 18 $^{\prime}$ 31.5 mm.

High ripple current 105 °C

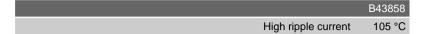

Cut or kinked leads

Single-ended capacitors are available with cut or kinked leads. Other lead configurations also available upon request.

Cut leads (Chapter A)

Available for series B41002, B41022, B41044, B41827, B41828, B43044, B43082, B43086, B43088, B43827, B43828.

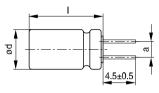
Last 3 digits of ordering code: 002



KAL1086-R

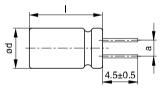
Case size d x I (mm)	Dimensions
	(mm)
	a ±0.5
4 x 7	1.5
5 x 7	2.0
5 x 11	2.0
6.3 x 7	2.5
6.3 x 11	2.5
8 x 7	3.5
8 x 11.5	3.5
8 x 15	3.5
8 x 20	3.5
10 x 12.5	5.0
10 x 16	5.0
10 x 20	5.0
10 x 25	5.0

Case size d x l (mm)	Dimensions
	(mm)
	a ±0.5
12.5 x 16	5.0
12.5 x 20	5.0
12.5 x 25	5.0
12.5 x 31.5	5.0
12.5 x 35.5	5.0
12.5 x 40	5.0
16 x 20	7.5
16 x 25	7.5
16 x 31.5	7.5
16 x 35.5	7.5
16 x 40	7.5
18 x 20	7.5
18 x 25	7.5
18 x 31.5	7.5
18 x 35.5	7.5
18 x 40	7.5



Cut leads (Chapter B)

Available for series B41858, B41859, B41863, B41866, B41868, B41888, B41890, B41896, B42824, B42851, B43866, B43867, B43890, B43896.


Last 3 digits of ordering code: 002

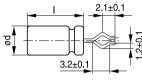
With stand-off rubber seal

KAL1085-I

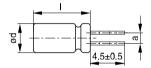
With flat rubber seal

KAL1086-R

Case size	Dimensions (mm)
d´l(mm)	a ±0.5
10 ´ 12.5	5.0
10 ´ 16	5.0
10 ′ 20	5.0
12.5 ´ 20	5.0
12.5 ´ 25	5.0
16 ´ 20	7.5
16 ´ 25	7.5
16 ´ 31.5	7.5
16 ´ 35.5	7.5
18 ´ 20	7.5
18 ´ 25	7.5
18 ′ 31.5	7.5
18 ´ 35	7.5
18 ´ 40	7.5
	



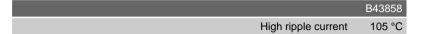
High ripple current 105 °C


Kinked leads (Chapter A)

Available for series B41002, B41022, B41044, B41827, B41828, B43044, B43082, B43086, B43088, B43827, B43828.

Last 3 digits of ordering code: 001

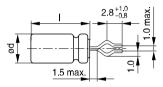
KAL1137-5



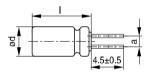
KAL1084-A

Case size d x I (mm)	Dimensions
	(mm)
	a ±0.5
4 x 7	1.5
5 x 7	2.0
5 x 11	2.0
6.3 x 7	2.5
6.3 x 11	2.5
8 x 7	3.5
8 x 11.5	3.5
8 x 15	3.5
8 x 20	3.5
10 x 12.5	5.0
10 x 16	5.0
10 x 20	5.0
10 x 25	5.0

Case size d x I (mm)	Dimensions
	(mm)
	a ±0.5
12.5 x 16	5.0
12.5 x 20	5.0
12.5 x 25	5.0
12.5 x 31.5	5.0
12.5 x 35.5	5.0
12.5 x 40	5.0
16 x 20	7.5
16 x 25	7.5
16 x 31.5	7.5
16 x 35.5	7.5
16 x 40	7.5
18 x 20	7.5
18 x 25	7.5
18 x 31.5	7.5
18 x 35.5	7.5
18 x 40	7.5



Kinked leads (Chapter B)


Available for series B41858, B41859, B41863, B41866, B41868, B41888, B41890, B41896, B42824, B42851, B43866, B43867, B43890, B43896.

Last 3 digits of ordering code: 001

With stand-off rubber seal

KAL1081-K

KAL1083-2

KAL1084-A

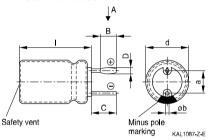
With flat rubber seal

Case size	Dimensions (mm)
d´l(mm)	a ±0.5
10 ´ 20	5.0
12.5 ´ 20	5.0
12.5 ´ 25	5.0
16 ´ 20	7.5
16 ´ 25	7.5
16 ´ 31.5	7.5
16 ´ 35.5	7.5
18 ´ 20	7.5
18 ´ 25	7.5
18 ´ 31.5	7.5
18 ´ 35	7.5
18 ′ 40	7.5

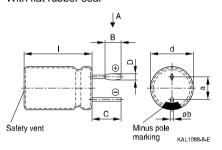
High ripple current 105 °C

PAPR leads (Protection Against Polarity Reversal)

These lead configurations ensure correct placement of the capacitor on the PCB with regard to polarity. PAPR leads are available for diameters from 10 mm up to 18 mm.

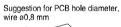

There are three configurations available: Crimped leads, J leads, bent 90° leads

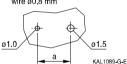
Available for series B41858, B41859, B41863, B41866, B41868, B41888, B41890, B41896, B42824, B42851, B43866, B43867, B43890, B43896.

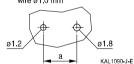

Crimped leads

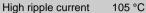
Last 3 digits of ordering code: 003

With stand-off rubber seal



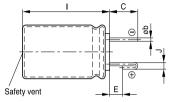

With flat rubber seal

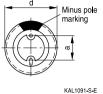

Suggestion for PCB hole diameter



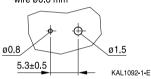
Suggestion for PCB hole diameter, wire ø1.0 mm

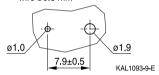
Case size	Dimensions (mm)					
d´l(mm)	B ±0.2	C ±0.5	D ±0.1	E ±0.1	a ±0.5	Æb
16 ´ 20	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05
16 ´ 25	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05
16 ´ 31.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05
16 ´ 35.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05
18 ´ 20	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18 ´ 25	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18 ′ 31.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18 ′ 35	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18 ′ 40	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1





J leads

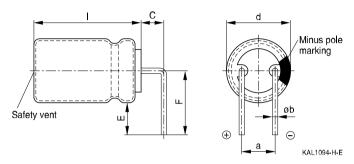

Last 3 digits of ordering code: 004



Suggestion for PCB hole diameter

Suggestion for PCB hole diameter, wire Ø0.6 mm

Suggestion for PCB hole diameter, wire Ø0.8 mm

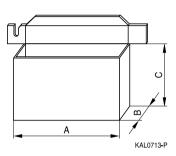

Case size	Dimensions (mm)					
d´l(mm)	C ±0.5	E ±0.5	J ±0.2	a ±0.5	Æb	
10 ´ 12.5	3.2	0.7	1.2	5.0	0.6 ±0.05	
10 ´ 16	3.2	0.7	1.2	5.0	0.6 ±0.05	
10 ´ 20	3.2	0.7	1.2	5.0	0.6 ±0.05	
12.5 ´ 20	3.2	0.7	1.2	5.0	0.6 ±0.05	
12.5 ´ 25	3.2	0.7	1.2	5.0	0.6 ±0.05	
16 ´ 20	3.5	0.7	1.6	7.5	0.8 ±0.05	
16 ´ 25	3.5	0.7	1.6	7.5	0.8 ±0.05	
16 ′ 31.5	3.5	0.7	1.6	7.5	0.8 ±0.05	
16 ´ 35.5	3.5	0.7	1.6	7.5	0.8 ±0.05	
18 ´ 20	3.5	0.7	1.6	7.5	0.8 ±0.1	
18 ´ 25	3.5	0.7	1.6	7.5	0.8 ±0.1	
18 ´ 31.5	3.5	0.7	1.6	7.5	0.8 ±0.1	
18 ′ 35	3.5	0.7	1.6	7.5	0.8 ±0.1	

High ripple current 105 °C

Bent 90° leads for horizontal mounting pinning Last 3 digits of ordering code: 012

Case size	Dimensions (mm)					
d´l(mm)	C ±0.5	E ±0.5	F ±0.5	a ±0.5	Æb	
16 ´ 20	4.0	4.0	12.0	7.5	0.8 ±0.05	
16 ´ 25	4.0	4.0	12.0	7.5	0.8 ±0.05	
16 ´ 31.5	4.0	4.0	12.0	7.5	0.8 ±0.05	
16 ´ 35.5	4.0	4.0	12.0	7.5	0.8 ±0.05	
18 ´ 20	4.0	4.0	13.0	7.5	0.8 ±0.1	
18 ´ 25	4.0	4.0	13.0	7.5	0.8 ±0.1	
18 ´ 31.5	4.0	4.0	13.0	7.5	0.8 ±0.1	
18 ´ 35	4.0	4.0	13.0	7.5	0.8 ±0.1	
18 ´ 40	4.0	4.0	13.0	7.5	0.8 ±0.1	

Bent leads for diameter 12.5 mm available upon request.

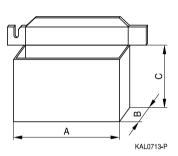


Packing units and box dimensions

Ammo pack

Valid for series B41002, B41022, B41044, B41827, B41828, B43044, B43082, B43086, B43088, B43827, B43828.

mm A _{max} B _{max} C _{max} pcs	s. 000
	000
4 ′ 7 330 50 196 20	
5 ′ 7 330 50 226 20	000
5 11 330 50 226 20	000
6.3 ´ 7 330 50 286 20	000
6.3 ´ 11	000
8 ´ 7 330 50 246 10	000
8 ´ 11.5 330 50 246 10	000
8 15 330 50 246 5	500
10 ´ 12.5 330 50 196 5	500
10 ´ 16 330 54 196 5	500
10 ´ 20 330 58 196 5	500
12.5 ´ 20	500
12.5 ′ 25 341 65 272 5	500
16 ´ 25 320 65 270 3	300
16 ´ 31.5 315 65 275 3	300
18 ´ 20 315 65 275 2	250
18 ´ 25 315 65 275 2	250
18 ´ 31.5	250



High ripple current 105 °C

Ammo pack

Valid for series B41858, B41859, B41863, B41866, B41868, B41888, B41890, B41896, B42824, B42851, B43866, B43867, B43890, B43896.

Case size	Dimens	Dimensions (mm)					
d´l				units			
mm	A_{max}	B _{max}	C_{max}	pcs.			
8 ′ 11.5	345	55	240	1000			
10 ′ 12.5	345	55	280	750			
10 ´ 16	345	60	200	500			
10 ´ 20	345	60	200	500			
12.5 ´ 20	345	65	280	500			
12.5 ´ 25	345	65	280	500			
16 ´ 20	315	65	275	300			
16 ´ 25	315	65	275	300			
16 ´ 31.5	315	65	275	300			
18 ´ 20	315	65	275	250			
18 ´ 25	315	65	275	250			
18 ′ 31.5	315	65	275	250			

High ripple current 105 °C

Overview of packing units and code numbers for case sizes 4 x 7 ... 16 x 40 Valid for series B41002, B41022, B41044, B41827, B41828, B43044, B43082, B43086, B43088, B43827, B43828.

Case size	Standard,	Taped,			Kinked leads,	Cut leads,
dxl	bulk	Ammo pa	ack		bulk	bulk
mm	pcs.	pcs.			pcs.	pcs.
4 x 7	10000	2000			15000	15000
5 x 7	7500	2000			10000	10000
5 x 11	5000	2000			10000	10000
6.3 x 7	5000	2000			10000	10000
6.3 x 11	5000	2000			5000	5000
8 x 7	5000	1000			5000	5000
8 x 11.5	2500	1000			4000	4000
8 x 15	2000	1000			2500	2500
8 x 20	1500				2000	2000
10 x 12.5	2000	500			2500	2500
10 x 16	1500	500			2000	2000
10 x 20	1000	500			1500	1500
10 x 25	1000	500			1250	1250
12.5 x 16	750	500			1000	1000
12.5 x 20	750	500			500	500
12.5 x 25	750	500			500	500
12.5 x 31.5	500				750	750
12.5 x 35.5	500				750	750
12.5 x 40	500				750	750
16 x 20	375	300			500	500
16 x 25	375	300			500	500
16 x 31.5	250	300			375	375
16 x 35.5	250				375	375
16 x 40	250				375	375
The last three	000	Code	F (mm)	d (mm)	001	002
digits of the		006	3.5	8		
complete		007	2.5	4 6.3		
ordering code		800	5.0	4 12.5		
state the lead		009	7.5	16 18		
configuration		016	2.0	4 5		

High ripple current 105 °C

Overview of packing units and code numbers for case sizes 18 x 20 ... 18 x 40

Valid for series B41002, B41022, B41044, B41827, B41828, B43044, B43082, B43086, B43088, B43827, B43828.

Case size	Standard,	Taped,			Kinked leads,	Cut leads,
d x l	bulk	Ammo pa	ack		bulk	bulk
mm	pcs.	pcs.			pcs.	pcs.
18 x 20	250	250			100	100
18 x 25	250	250			100	100
18 x 31.5	250	250			100	100
18 x 35.5	250				100	100
18 x 40	250				100	100
The last three	000	Code	F (mm)	d (mm)	001	002
digits of the complete ordering code state the lead configuration		009	7.5	16 18		

High ripple current 105 °C

Overview of packing units and code numbers for case sizes 8 11.5 ... 16 35.5 Valid for series B41858, B41859, B41863, B41866, B41868, B41888, B41890, B41896, B42824, B42851, B43866, B43867, B43890, B43896.

								PAPR	
Case size	Stan-	Taped	l,		Kinked	Cut	Crimped	J leads,	Bent 90°
d´l	dard,	Ammo	pack		leads,	leads,	leads,	blister	leads,
	bulk				bulk	bulk	blister		blister
mm	pcs.	pcs.			pcs.	pcs.	pcs.	pcs.	pcs.
8 ′ 11.5	1000	1000							
10 ′ 12.5	1000	750				1000		675	
10 ´ 16	1000	500				1000		675	
10 ´ 20	500	500			500	500		500	
12.5 ´ 20	350	500			350	350		300	1)
12.5 ´ 25	250	500			500	500		225	1)
12.5 ′ 30	200								
12.5 ´ 35	175								
12.5 ′ 40	175								
16 ´ 20	250	300			200	200	200	200	120
16 ´ 25	250	300			200	200	200	200	120
16 ´ 31.5	200	300			250	250	344	344	120
16 ´ 35.5	100				100	100	150	150	150
The last three	000	Code	F (mm)	d (mm)	001	002	003	004	012
digits of the		006	3.5	8					
complete		800	5	512.5					
ordering code		009	7.5	1618					
state the lead									
configuration									

¹⁾ Available upon request

High ripple current 105 °C

Overview of packing units and code numbers for case sizes 18 20 ... 18 40

Valid for series B41858, B41859, B41863, B41866, B41868, B41888, B41890, B41896, B42824, B42851, B43866, B43867, B43890, B43896.

								PAPR	
Case size	Stan-	Tapeo	١,		Kinked	Cut	Crimped	J leads,	Bent 90°
d´l	dard,	Ammo	pack		leads,	leads,	leads,	blister	leads,
	bulk				bulk	bulk	blister		blister
mm	pcs.	pcs.	pcs.			pcs.	pcs.	pcs.	pcs.
18 ′ 20	175	250			175	175	200	200	120
18 ´ 25	150	250	250			150	200	200	120
18 ′ 31.5	100	250	250			100	150	150	120
18 ´ 35	100				100	100	150	150	150
18 ′ 40	125				100	100	120		72
The last three	000	Code	F (mm)	d (mm)	001	002	003	004	012
digits of the		009	7.5	1618					
complete									
ordering code									
state the lead									
configuration									

	B43858
High ripple current	105 °C

Cautions and warnings

Personal safety

The electrolytes used by EPCOS have not only been optimized with a view to the intended application, but also with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

Furthermore, part of the high-voltage electrolytes used by EPCOS are self-extinguishing. They contain flame-retarding substances which will quickly extinguish any flame that may have been ignited.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes. However, in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no safe substitute materials are currently known. However, the amount of dangerous materials used in our products has been limited to an absolute minimum. Nevertheless, the following rules should be observed when handling aluminum electrolytic capacitors:

- Any escaping electrolyte should not come into contact with eyes or skin.
- If electrolyte does come into contact with the skin, wash the affected parts immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment.
- Avoid breathing in electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

High ripple current 105 °C

Product safety

The table below summarizes the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Topic	Safety information	Reference chapter "General technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"
Reverse voltage	Voltages polarity classes should be prevented by connecting a diode.	3.1.6 "Reverse voltage"
Upper category temperature	Do not exceed the upper category temperature.	7.2 "Maximum permissible operating temperature"
Maintenance	Make periodic inspections of the capacitors. Before the inspection, make sure that the power supply is turned off and carefully discharge the electricity of the capacitors. Do not apply any mechanical stress to the capacitor terminals.	10 "Maintenance"
Mounting position of screw-terminal capacitors	Do not mount the capacitor with the terminals (safety vent) upside down.	11.1. "Mounting positions of capacitors with screw terminals"
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2 Nm M6: 2.5 Nm	11.3 "Mounting torques"
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"

	B43858
High ripple current	105 °C

Topic	Safety information	Reference
		chapter "General
		technical information"
Soldering,	Do not allow halogenated hydrocarbons to come	11.6
cleaning agents	into contact with aluminum electrolytic capacitors.	"Cleaning agents"
Passive	Avoid external energy, such as fire or electricity.	8.1
flammability		"Passive flammability"
Active	Avoid overload of the capacitors.	8.2
flammability		"Active flammability"
		Reference
		chapter "Capacitors with
		screw terminals"
Dragkdown atropath	Do not domage the inculating closure conscielly	
Breakdown strength]	"Screw terminals
of insulating	when ring clips are used for mounting.	accessories"
sleeves		

High ripple current 105 °C

Symbols and terms

Symbol	English	German
С	Capacitance	Kapazität
C_R	Rated capacitance	Nennkapazität
Cs	Series capacitance	Serienkapazität
$C_{S,T}$	Series capacitance at temperature T	Serienkapazität bei Temperatur T
C_{f}	Capacitance at frequency f	Kapazität bei Frequenz f
d	Case diameter, nominal dimension	Gehäusedurchmesser, Nennmaß
d_{max}	Maximum case diameter	Maximaler Gehäusedurchmesser
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatzserienwiderstand
ESR _f	Equivalent series resistance at frequency f	Ersatzserienwiderstand bei Frequenz f
ESR _T	Equivalent series resistance at temperature T	Ersatzserienwiderstand bei Temperatur T
f	Frequency	Frequenz
1	Current	Strom
I_{AC}	Alternating current (ripple current)	Wechselstrom
$I_{AC,rms}$	Root-mean-square value of alternating current	Wechselstrom, Effektivwert
$I_{AC,f}$	Ripple current at frequency f	Wechselstrom bei Frequenz f
$I_{AC,max}$	Maximum permissible ripple current	Maximal zulässiger Wechselstrom
$I_{AC,R}$	Rated ripple current	Nennwechselstrom
$I_{AC,R}$ (B)	Rated ripple current for base cooling	Nennwechselstromstrom für Bodenkühlung
l _{leak}	Leakage current	Reststrom
$I_{\text{leak},\text{op}}$	Operating leakage current	Betriebsreststrom
1	Case length, nominal dimension	Gehäuselänge, Nennmaß
I_{max}	Maximum case length (without	Maximale Gehäuselänge (ohne Anschlüsse
	terminals and mounting stud)	und Gewindebolzen)
R	Resistance	Widerstand
R_{ins}	Insulation resistance	Isolationswiderstand
R_{symm}	Balancing resistance	Symmetrierwiderstand
T	Temperature	Temperatur
DT	Temperature difference	Temperaturdifferenz
T_A	Ambient temperature	Umgebungstemperatur
T _C	Case temperature	Gehäusetemperatur
T_B	Capacitor base temperature	Temperatur des Becherbodens
t	Time	Zeit
Dt	Period	Zeitraum
t _b	Service life (operating hours)	Brauchbarkeitsdauer (Betriebszeit)

Symbol	English	German
V	Voltage	Spannung
V_{F}	Forming voltage	Formierspannung
V_{op}	Operating voltage	Betriebsspannung
V_R	Rated voltage, DC voltage	Nennspannung, Gleichspannung
V_s	Surge voltage	Spitzenspannung
X_{C}	Capacitive reactance	Kapazitiver Blindwiderstand
X_L	Inductive reactance	Induktiver Blindwiderstand
Z	Impedance	Scheinwiderstand
Z_T	Impedance at temperature T	Scheinwiderstand bei Temperatur T
tan d	Dissipation factor	Verlustfaktor
1	Failure rate	Ausfallrate
$\mathbf{e}_{\!\scriptscriptstyle 0}$	Absolute permittivity	Elektrische Feldkonstante
e _r	Relative permittivity	Dielektrizitätszahl
W	Angular velocity; 2 p f	Kreisfrequenz; 2 p f

Note

All dimensions are given in mm.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified . In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FormFit, MiniBlue, MiniCell, MKK, MKD, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.