

1N5614 thru 1N5622

VOIDLESS-HERMETICALLY-SEALED STANDARD RECOVERY GLASS RECTIFIERS

DESCRIPTION

This "standard recovery" rectifier diode series is military qualified to MIL-PRF-19500/427 and is ideal for high-reliability applications where a failure cannot be tolerated. These industry-recognized 1.0 Amp rated rectifiers for working peak reverse voltages from 200 to 1000 volts are hermetically sealed with voidless-glass construction using an internal "Category I" metallurgical bond. These devices are also available in surface mount MELF package configurations by adding a "US" suffix (see separate data sheet for 1N5614US thru 1N5622US). Microsemi also offers numerous other rectifier products to meet higher and lower current ratings with various recovery time speed requirements including fast and ultrafast device types in both through-hole and surface mount packages.

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

FEATURES

- Popular JEDEC registered 1N5614 to 1N5622 series
- · Voidless hermetically sealed glass package
- Triple-Layer Passivation
- Internal "Category I" Metallurgical bonds
- Working Peak Reverse Voltage 200 to 1000 Volts.
- JAN, JANTX, JANTXV, and JANS available per MIL-PRF-19500/427
- Surface mount equivalents also available in a square end-cap MELF configuration with "US" suffix (see separate data sheet for 1N5614US thru 1N5622US)

MAXIMUM RATINGS

- Junction & Storage Temperature: -65°C to +200°C
- Thermal Resistance: 38°C/W junction to lead at 3/8 inch (10 mm) lead length from body
- Thermal Impedance: 4.5°C/W @ 10 ms heating time
- Average Rectified Forward Current (I_O): 1.0 Amps @ $T_A = 55^{\circ}$ C and 0.75 Amps @ $T_A = 100^{\circ}$ C
- Forward Surge Current: 30 Amps @ 8.3 ms half-sine
- Solder Temperatures: 260°C for 10 s (maximum)

APPLICATIONS / BENEFITS

- Standard recovery 1 Amp rectifiers 200 to 1000 V
- Military and other high-reliability applications
- General rectifier applications including bridges, halfbridges, catch diodes, etc.
- High forward surge current capability
- Extremely robust construction
- Low thermal resistance
- Controlled avalanche with peak reverse power capability
- Inherently radiation hard as described in Microsemi MicroNote 050

MECHANICAL AND PACKAGING

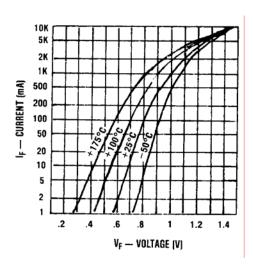
- CASE: Hermetically sealed voidless hard glass with Tungsten slugs (package dimensions on last page)
- TERMINATIONS: Axial leads are copper with Tin/Lead (Sn/Pb) finish. Note: Previous JANS inventory had solid Silver axial-leads and no finish.
- MARKING: Body paint and part number, etc.
- · POLARITY: Cathode band
- TAPE & REEL option: Standard per EIA-296
- WEIGHT: 340 mg

ELECTRICAL CHARACTERISTICS

ТҮРЕ	WORKING PEAK REVERSE VOLTAGE V _{RWM}	MINIMUM BREAKDOWN VOLTAGE V _{BR} @ 50μA	AVERAGE RECTIFIED CURRENT I _O @ T _A (NOTE 1)		FORWARD VOLTAGE (MAX.) V _F @ 3A	REVERSE CURRENT (MAX.) I _R @ V _{RWM}		MAXIMUM SURGE CURRENT I _{FSM} (NOTE 2)	REVERSE RECOVERY (NOTE 3) t _{rr}
	VOLTS	VOLTS	AMPS		VOLTS	μΑ		AMPS	μs
			55°C	100°C		25°C	100°C		
1N5614	200	220	1.00	.750		0.5	25	30	2.0
1N5616	400	440	1.00	.750	0.8 MIN.	0.5	25	30	2.0
1N5618	600	660	1.00	.750		0.5	25	30	2.0
1N5620	800	880	1.00	.750	1.3 MAX.	0.5	25	30	2.0
1N5622	1000	1100	1.00	.750		0.5	25	30	2.0

NOTE 1: From 1 Amp at $T_A = 55^{\circ}$ C, derate linearly at 5.56 mA/ $^{\circ}$ C to 0.75 Amp at $T_A = 100^{\circ}$ C. From $T_A = 100^{\circ}$ C, derate linearly at 7.5 mA/ $^{\circ}$ C to 0 Amps at $T_A = 200^{\circ}$ C. These ambient ratings are for PC boards where thermal resistance from mounting point to ambient is sufficiently controlled where $T_{J(max)}$ does not exceed 175 $^{\circ}$ C.

NOTE 2: $T_A = 100^{\circ}C$, f = 60 Hz, $I_O = 750$ mA for ten 8.3 ms surges @ 1 minute intervals


NOTE 3: $I_F = 0.5A$, $I_{RM} = 1A$, $I_{R(REC)} = 0.250A$

RECTIFIERS

SYMBOLS & DEFINITIONS							
Symbol	Definition						
V_{BR}	Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current						
V _{RWM}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range						
Io	Average Rectified Output Current: Output Current averaged over a full cycle with a 50 hZ or 60 Hz sine-wave input and a 180 degree conduction angle						
V _F	Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current						
I _R	Maximum Leakage Current: The maximum leakage current that will flow at the specified voltage and temperature						
С	Capacitance: The capacitance in pF at a frequency of 1 MHz and specified voltage						
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified decay point after a peak reverse current occurs.						

GRAPHS

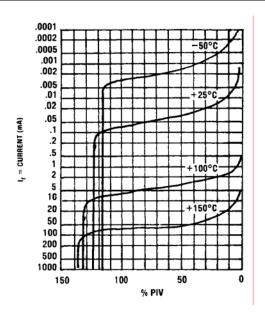


FIGURE 2 TYPICAL REVERSE CURRENT vs PIV

RECTIFIERS

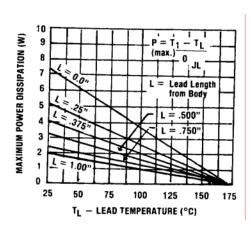


FIGURE 3 MAXIMUM POWER DISSIPATION vs LEAD TEMPERATURE

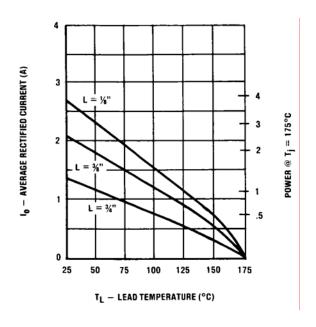
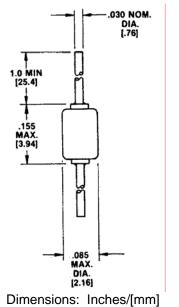



FIGURE 4 MAXIMUM CURRENT vs LEAD TEMPERATURE

PACKAGE DIMENSIONS

NOTE: Lead tolerance = +0.003/-0.004 inches