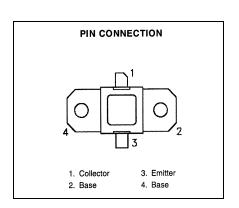


MS2228

RF & MICROWAVE TRANSISTORS L-BAND RADAR APPLICATIONS

Features


- 1090 MHz
- 50 VOLTS
- P_{OUT} = 75 WATTS
- G_P = 9.2 dB MINMUM
- 10:1 VSWR CAPABILITY
- COMMON BASE CONFIGURATION

DESCRIPTION

The MS2228 device is a high power Class C transistor specifically designed for L-Band Avionics transponder/interrogator pulsed output and driver applications.

This device is capable of operation over a wide range of pulse widths, duty cycles, and is capable of withstanding 10:1 output VSWR at rated RF conditions. Internal input and output matching provide optimum performance and product consistency.

ABSOLUTEMAXIMUM RATINGS (Tcase = 25°C)

Symbol	Parameter	Value	Unit
P _{DISS}	Power Dissipation	175	W
Ic	Device Current	5.4	Α
Vcc	Collector-Supply Voltage	55	V
T J	Junction Temperature	200	°C
T _{STG}	Storage Temperature	-65 to +200	°C

Thermal Data

$R_{TH(J-C)}$	Thermal Resistance Junction-case*	0.86	°C/W			

Revision A, October 2009

MS2228

ELECTRICAL SPECIFICATIONS (Tcase = 25°C)

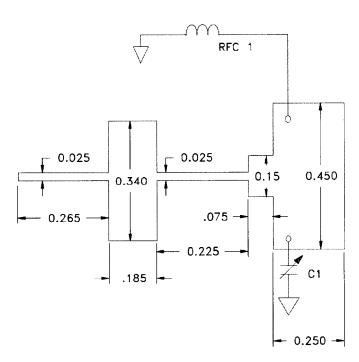
STATIC

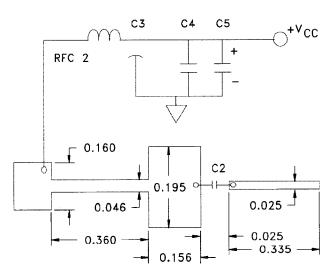
Symbol		Test Conditions		Value		Unit
Syllibol	ymbol rest Conditions		Min.	Typ.	Max.	Offic
BV _{CBO}	I _C = 10 mA	$I_E = 0 \text{ mA}$	65			V
BV _{EBO}	I _E = 4 mA	$I_C = 0 \text{ mA}$	3.5			V
BV _{CER}	I _C = 20 mA	$R_{BE} = 10\Omega$	65			V
I _{CES}	V _{CE} = 50 V				6	mA
HFE	V _{CE} = 5 V	I _C = 1 A	10			

DYNAMIC

	Symbol Test Conditions			Value			
Symbol			Min.	Тур.	Max.	Unit	
P _{out}	f = 1090 MHz	P _{IN} = 9W	V _{CC} = 50V	75			W
G₽	f = 1090 MHz	$P_{IN} = 9W$	$V_{CC} = 50V$	9.2			dB
ης	f = 1090 MHz	$P_{IN} = 9W$	$V_{CC} = 50V$	48			%

Conditions: Pulse Width = 32 μ sec Duty Cycle = 2%




IMPEDANCE DATA

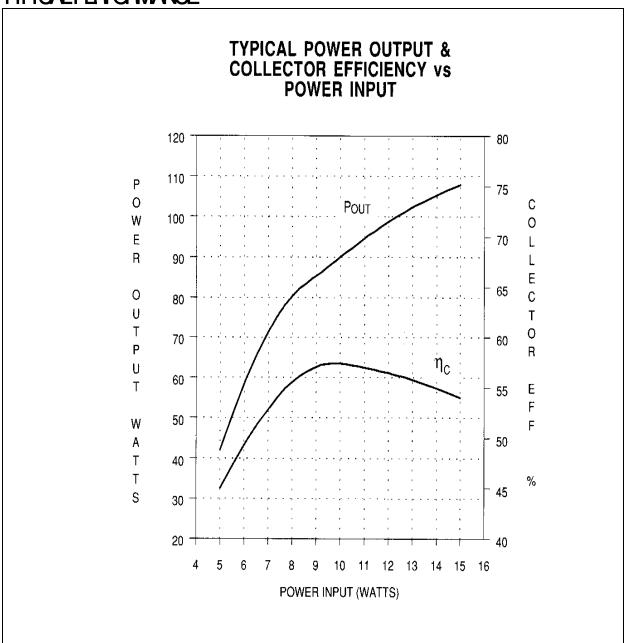
FREQ	$Z_IN(\Omega)$	$Z_{CC}(\Omega)$
1030 MHz	7.0 + j3.0	12.5 - j4.5
1090 MHz	11.0 + j1.5	13.0 - j3.0

 $P_{IN} = 9.0W$ $V_{CC} = 50V$

TESTOROUT

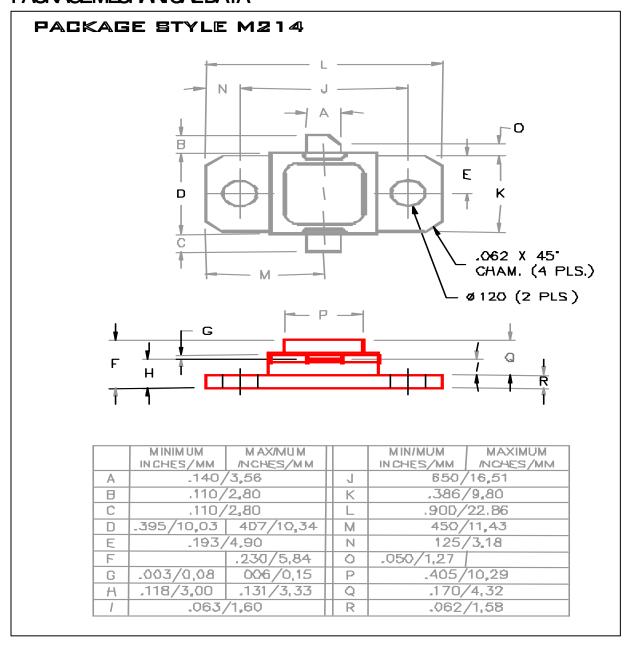
All dimensions are in inches. Substrate material: .025 thick Al₂O₃

: 0.8-8.0 pF Johanson Gigatrim Capacitor C1


C2 100 pF Chip Capacitor 1500 pF Filtercon Feedthru СЗ

C4 : 1 μF, Ceramic Capacitor C5 : 100 μF, Electrolytic Capacitor
RFC 1: Au Plated Ni Strap
0.280 Long x 0.035 Wide x 0.005 Thick

RFC 2: #26 Wire, 4 Turn 1/16 I.D.



TYPICAL PERFORMANCE

PACKAGEMECHANICAL DATA

