

RADIATION HARDENED NPN POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/544

<u>Qualified Levels:</u> JANSM, JANSD, JANSP, JANSL, JANSR, JANSF

DESCRIPTION

These RHA level 2N5152 and 2N5154 silicon transistor devices are military Radiation Hardness Assurance qualified up to a JANSF level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N5152 and 2N5154.
- JANS RHA qualifications are available per MIL-PRF-19500/544.

TO-39 (TO-205AD) Package

Also available in:

TO-5 Package

(long-leaded)
JANS_2N5152L &
JANS_2N5154L

🔁 U3 Package

(surface mount)
JANS_2N5152U3 &
JANS_2N5154U3

APPLICATIONS / BENEFITS

- High frequency operation.
- Lightweight.
- High-speed power-switching applications.
- High-reliability applications.

MAXIMUM RATINGS

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_J and T_{STG}	-65 to +200	٥C
Thermal Resistance Junction-to-Ambient	R _{OJA}	175	°C/W
Thermal Resistance Junction-to-Case	Rejc	10	°C/W
Reverse Pulse Energy (1)		15	mJ
Collector Current (dc)	I _C	2	Α
Collector to base voltage (static), emitter open	V _{CBO}	100	V
Collector to emitter voltage (static) base open	V_{CEO}	80	V
Emitter to base voltage (static) collector open	V_{EBO}	5.5	V
Steady-State Power Dissipation @ T _A = +25 °C	P _D	1	W
Steady-State Power Dissipation @ T _C = +25 °C	P _D	10	W

Notes: 1. This rating is based on the capability of the transistors to operate safely in the unclamped inductive load energy test circuit.

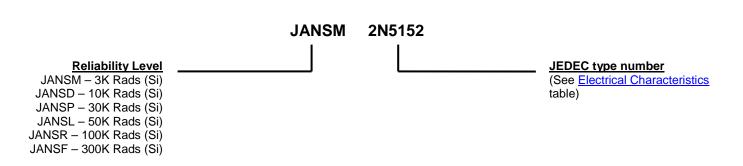
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Gold plate over nickel.
- MARKING: Part number, date code, manufacturer's ID.
- POLARITY: NPN
- WEIGHT: Approximately 1.064 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS			
Symbol	Definition			
C_{obo}	Common-base open-circuit output capacitance.			
I _{CEO}	Collector cutoff current, base open.			
I _{CEX}	Collector cutoff current, circuit between base and emitter.			
I _{EBO}	Emitter cutoff current, collector open.			
h _{FE}	Common-emitter static forward current transfer ratio.			
V_{CEO}	Collector-emitter voltage, base open.			
V_{CBO}	Collector-emitter voltage, emitter open.			
V_{EBO}	Emitter-base voltage, collector open.			

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C unless otherwise noted.

OFF CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Collector-Emitter Breakdown Voltage	V	80		
$I_C = 100 \text{ mA}, I_B = 0$	$V_{(BR)CEO}$	6		V
Emitter-Base Cutoff Current			1.0	uА
$V_{EB} = 4.0 \text{ V}, I_{C} = 0$	I _{EBO}		1.0	μΑ mA
$V_{EB} = 5.5 \text{ V}, I_{C} = 0$			1.0	ША
Collector-Emitter Cutoff Current			1.0	μA
$V_{CE} = 60 \text{ V}, V_{BE} = 0$	I _{CES}		1.0	μΛ mA
$V_{CE} = 100 \text{ V}, V_{BE} = 0$			1.0	ША
Collector-Emitter Cutoff Current			50	
$V_{CE} = 40 \text{ V}, I_{B} = 0$	ICEO		50	μA

ON CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Forward-Current Transfer Ratio					
$I_C = 50 \text{ mA}, V_{CE} = 5 \text{ V}$	2N5152		20		
	2N5154		50		
$I_C = 2.5 \text{ A}, V_{CE} = 5 \text{ V}$	2N5152	h _{FE}	30	90	
	2N5154		70	200	
$I_C = 5A$, $V_{CE} = 5V$	2N5152		20		
	2N5154		40		
Collector-Emitter Saturation Voltage				0.75	
$I_C = 2.5 \text{ A}, I_B = 250 \text{ mA}$		$V_{CE(sat)}$		1.5	V
$I_C = 5.0 \text{ A}, I_B = 500 \text{ mA}$, ,		1.5	
Base-Emitter Voltage Non-Saturation		\/		1.45	V
$I_C = 2.5 \text{ A}, V_{CE} = 5 \text{ V}$		V_{BE}		1.43	V
Base-Emitter Saturation Voltage				1.45	
$I_C = 2.5 \text{ A}, I_B = 250 \text{ mA}$		$V_{BE(sat)}$		2.2	V
$I_C = 5.0 \text{ A}, I_B = 500 \text{ mA}$, ,		۷.۷	

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Sig	nal Short-				
Circuit Forward Current Transfer Ratio 2N5152 I _C = 500 mA, V _{CE} = 5 V, f = 10 MHz 2N5154		h _{fe}	6 7		
Small-signal short Circuit Forward-Current					
		h _{fe}	20 50		
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$		C_{obo}		250	pF

ELECTRICAL CHARACTERISTICS @ $T_A = +25 \, \text{C}$ unless otherwise noted. (continued)

SWITCHING CHARACTERISTICS

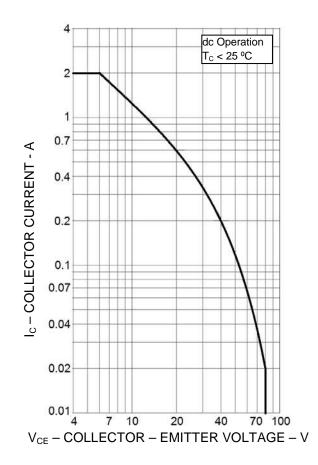
Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time $I_C = 5 \text{ A}, I_{B1} = 500 \text{ mA}$	t _{on}		0.5	μs
Turn-Off Time $R_L = 6\Omega$	t _{off}		1.5	μs
Storage Time I _{B2} = -500 mA	t _S		1.4	μs
Fall Time $V_{BE(OFF)} = 3.7 \text{ V}$	t _f		0.5	μs

SAFE OPERATING AREA (See SOA graph below and MIL-STD-750, method 3053)

DC Tests

 $T_C = +25 \, \text{C}$, $t_P = 1.0 \, \text{s}$, 1 Cycle

Test 1


 $V_{CE} = 5.0 \text{ V}, I_{C} = 2.0 \text{ A}$

Test 2

 $V_{CE} = 32 \text{ V}, I_{C} = 310 \text{ mA}$

Test 3

 $V_{CE} = 80 \text{ V}, I_{C} = 12.5 \text{ mA}$

Maximum Safe Operating Area

ELECTRICAL CHARACTERISTICS @ $T_A = +25 \, \text{C}$, unless otherwise noted (continued)

POST RADIATION ELECTRICAL CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Collector to Emitter Cutoff Current V _{CE} = 40 V		I _{CEO}		100	μA
Emitter to Base Cutoff Current V _{EB} = 4 V		I _{EBO}		2.0	μΑ
Breakdown Voltage, Collector to Emitter I _C = 100 mA		$V_{(BR)CEO}$	80		V
Collector to Emitter Cutoff Current V _{CE} = 60 V		I _{CES}		2.0	μΑ
Emitter to Base Cutoff Current V _{EB} = 5.5 V		I _{EBO}		2.0	mA
Forward-Current Transfer Ratio $^{(1)}$ $I_C = 50$ mA, $V_{CE} = 5$ V $I_C = 2.5$ A, $V_{CE} = 5$ V $I_C = 5$ A pulsed, $V_{CE} = 5$ V	2N5152 2N5154 2N5152 2N5154 2N5152 2N5154	[h _{FE}]	[10] [25] [15] [35] [10]	90 200	
Base to Emitter voltage (non-saturated) $V_{CE} = 5 \text{ V}, I_{C} = 2.5 \text{ A}, \text{ pulsed}$		V _{BE}		1.45	V
Collector-Emitter Saturation Voltage $I_C = 2.5$ mA, $I_B = 250$ mA, pulsed $I_C = 500$ mA, $I_B = 500$ mA, pulsed		V _{CE(sat)}		0.86 1.73	V
Base-Emitter Saturation Voltage $I_C = 2.5 \text{ A}, I_B = 250 \text{ mA}, \text{ pulsed}$ $I_C = 5 \text{ A}, I_B = 500 \text{ mA}, \text{ pulsed}$		V _{BE(sat)}		1.67 2.53	V

⁽¹⁾ See method 1019 of MIL-STD-750 for how to determine $[h_{FE}]$ by first calculating the delta $(1/h_{FE})$ from the preand post-radiation h_{FE} . Notice the $[h_{FE}]$ is not the same as h_{FE} and cannot be measured directly. The $[h_{FE}]$ value can never exceed the pre-radiation minimum h_{FE} that it is based upon.

GRAPHS

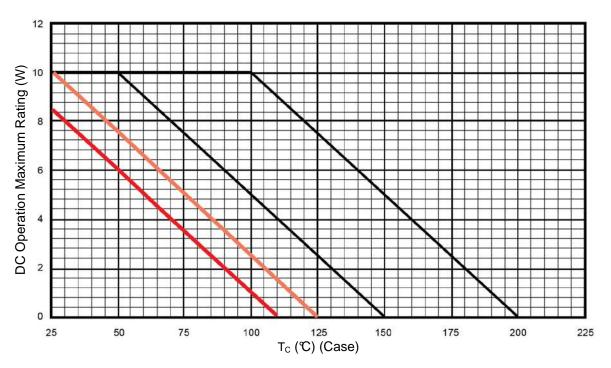


FIGURE 1
Temperature-Power Derating Curve

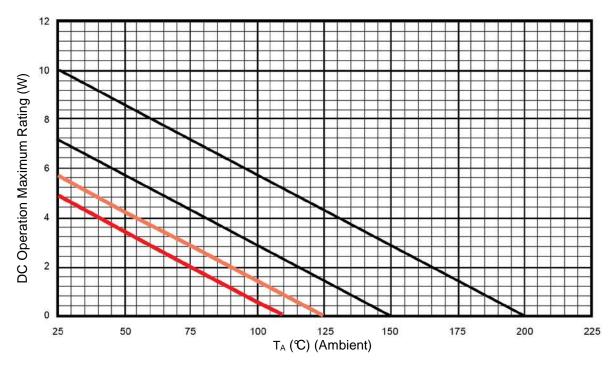


FIGURE 2
Temperature-Power Derating Curve

GRAPHS (continued)

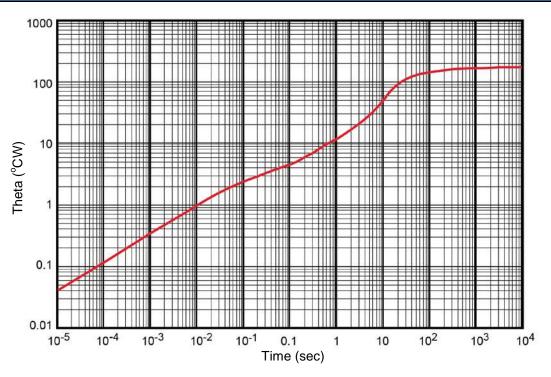


FIGURE 3
Thermal Impedance (R_{OJA})

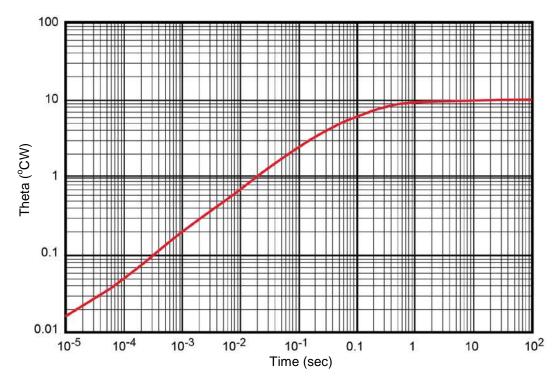
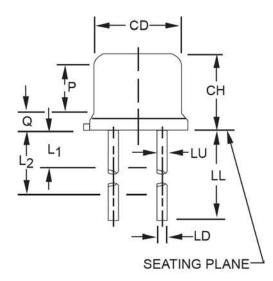
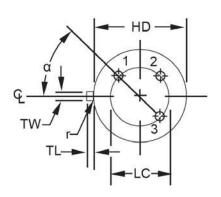




FIGURE 4 Thermal Impedance ($R_{\Theta JC}$)

PACKAGE DIMENSIONS

	Dimensions					
Symbol	In	ch	Millin	neters	Note	
	Min	Max	Min	Max		
CD	.305	.335	7.75	8.51	6	
СН	.240	.260	6.10	6.60		
HD	.335	.370	8.51	9.40		
LC	.200) TP	5.08	3 TP	7	
LD	.016	.019	0.41	0.48	8,9	
LL		See note 14				
LU	.016	.019	0.41	0.48	8,9	
L1		.050		1.27	8,9	
L2	.250		6.35		8,9	
Р	.100		2.54		7	
Ø		.030	0.76		5	
TL	.029	.045	0.74 1.14		3,4	
TW	.028	.034	0.71	0.86	3	
r		.010		0.25	10	
α	45°	45°TP		45°TP		

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TW shall be held for a minimum length of .011 (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- 6. CD shall not vary more than .010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling.
- 7. Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC. The device may be measured by direct methods or by gauging procedure.
- 8. Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in and beyond LL minimum.
- 9. All three leads.
- 10. The collector shall be internally connected to the case.
- 11. Dimension r (radius) applies to both inside corners of tab.
- 12. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 13. Lead 1 = emitter, lead 2 = base, lead 3 = collector.
- 14. TO-39 dimension LL = .5 inch (12.70 mm) min. and .750 inch (19.05 mm) max.