

NPN LOW POWER SILICON **TRANSISTOR**

Qualified per MIL-PRF-19500/368

Qualified Levels: JAN, JANTX, JANTXV and JANS

DESCRIPTION

This family of 2N3439UA through 2N3440UA high-frequency, epitaxial planar transistors feature low saturation voltage. The UA package is hermetically sealed and provides a low profile for minimizing board height. These devices are also available in U4, TO-5 and TO-39 packaging. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N3439UA through 2N3440UA series.
- JAN, JANTX, JANTXV, and JANS qualifications are available per MIL-PRF-19500/368.
- RoHS compliant versions available (commercial grade only).
- $V_{CE(sat)} = 0.5 \text{ V } @ I_C = 50 \text{ mA}.$
- Turn-On time $t_{on} = 1.0 \mu s \text{ max } @ I_C = 20 \text{ mA}, I_{B1} = 2.0 \text{ mA}.$
- Turn-Off time $t_{off} = 10 \mu s \text{ max } @ I_C = 20 \text{ mA}, I_{B1} = -I_{B2} = 2.0 \text{ mA}.$

APPLICATIONS / BENEFITS

- General purpose transistors for medium power applications requiring high frequency switching and low package profile.
- Military and other high-reliability applications.

Also available in:

U4 package (surface mount) **12 2N3439U4 – 2N3440**U4

> TO-5 package (long leaded) 2N3439L - 2N3440L

> > TO-39 package (leaded)

MAXIMUM RATINGS (T_C = +25℃ unless otherwise noted)

Parameters / Test Conditions	Symbol	2N3439UA	2N3440UA	Unit
Collector-Emitter Voltage	V_{CEO}	350	250	V
Collector-Base Voltage	V _{CBO}	450	300	V
Emitter-Base Voltage	V _{EBO}	7.0		V
Collector Current	I _C	1.0		Α
Total Power Dissipation @ $T_A = +25 ^{\circ}\text{C}$		0	.8	
@ $T_C = +25 ^{\circ}C$ (2)	PD	5	.0	W
UA @ $T_{SP} = +25 ^{\circ}C^{(3)}$		2	.0	
Operating & Storage Junction Temperature Range	T _J , T _{stg} -65 to +200		${\mathcal C}$	

- **Notes:** 1. Derate linearly @ 4.57 mW/ \mathbb{C} for T_A > +25 \mathbb{C} .
 - 2. Derate linearly @ 28.5 mW/ \mathbb{C} for T $_{\mathbb{C}}$ > +25 \mathbb{C} .
 - 3. Derate linearly @ 14 mW/ \mathbb{C} for T _{SP} > +25 \mathbb{C} .

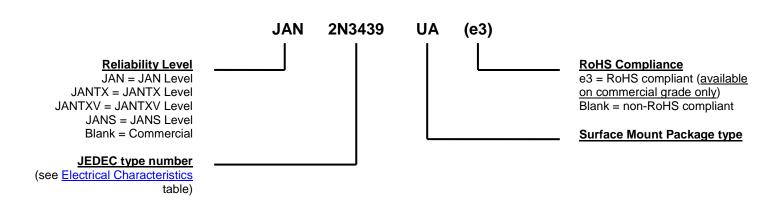
MSC - Lawrence

6 Lake Street. Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed ceramic package.
- TERMINALS: Gold plate over nickel.
- MARKING: Manufacturer's ID, date code, part number.
- POLARITY: NPN (see package outline).
- TAPE & REEL option: Per EIA-481. Consult factory for quantities.
- WEIGHT: 0.12 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS				
Symbol	Definition				
C_{ibo}	Common-base open-circuit input capacitance.				
C _{obo}	Common-base open-circuit output capacitance.				
I _{CEO}	Collector cutoff current, base open.				
I _{CEX}	Collector cutoff current, circuit between base and emitter.				
I _{EBO}	Emitter cutoff current, collector open.				
h _{FE}	Common-emitter static forward current transfer ratio.				
V_{BE}	Base-emitter voltage, dc .				
V_{CE}	Collector-emitter voltage, dc.				
V_{CEO}	Collector-emitter voltage, base open.				
V_{CBO}	Collector-emitter voltage, emitter open.				
V _{EB}	Emitter-base voltage, dc .				
V_{EBO}	Emitter-base voltage, collector open.				

ELECTRICAL CHARACTERISTICS ($T_A = +25$ °C, unless otherwise noted)

OFF CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Collector-Emitter Breakdown Voltage I_C = 10 mA R_{BB1} = 470 Ω ; V_{BB1} = 6 V L = 25 mH (min); f = 30 – 60 Hz	2N3439UA 2N3440UA	V _{(BR)CEO}	350 250		V
Collector-Emitter Cutoff Current $V_{CE} = 300 \text{ V}$ $V_{CE} = 200 \text{ V}$	2N3439UA 2N3440UA	I _{CEO}		2.0 2.0	μΑ
Emitter-Base Cutoff Current V _{EB} = 7.0 V		I _{EBO}		10	μΑ
Collector-Emitter Cutoff Current $V_{CE} = 450 \text{ V}, V_{BE} = -1.5 \text{ V}$ $V_{CE} = 300 \text{ V}, V_{BE} = -1.5 \text{ V}$	2N3439UA 2N3440UA	I _{CEX}		5.0 5.0	μA
Collector-Base Cutoff Current $V_{CB} = 360 \text{ V}$ $V_{CB} = 250 \text{ V}$ $V_{CB} = 450 \text{ V}$ $V_{CB} = 300 \text{ V}$	2N3439UA 2N3440UA 2N3439UA 2N3440UA	I _{CBO}		2.0 2.0 5.0 5.0	μΑ

ON CHARACTERISTICS (1)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Forward-Current Transfer Ratio $I_C = 20 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_C = 2.0 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_C = 0.2 \text{ mA}, V_{CE} = 10 \text{ V}$	h _{FE}	40 30 10	160	
Collector-Emitter Saturation Voltage I _C = 50 mA, I _B = 4.0 mA	V _{CE(sat)}		0.5	V
Base-Emitter Saturation Voltage I _C = 50 mA, I _B = 4.0 mA	V _{BE(sat)}		1.3	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = 10$ mA, $V_{CE} = 10$ V, $f = 5.0$ MHz	h _{fe}	3.0	15	
Forward Current Transfer Ratio $I_C = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$	h _{fe}	25		
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C_{obo}		10	pF
Input Capacitance $V_{CB} = 5.0 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C_{ibo}		75	pF

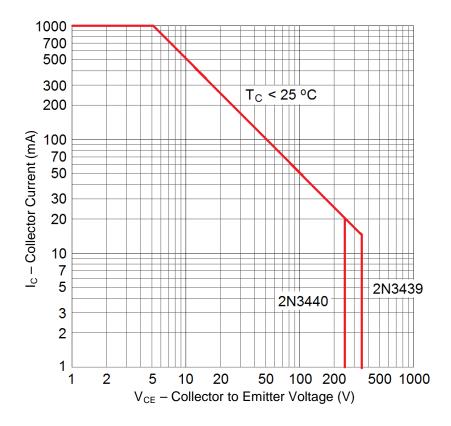
⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, duty cycle \leq 2.0%.

ELECTRICAL CHARACTERISTICS (T_A = +25℃, unless otherwise noted) continued

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time $V_{CC} = 200 \text{ V}; I_C = 20 \text{ mA}, I_{B1} = 2.0 \text{ mA}$	t _{on}		1.0	μs
Turn-Off Time $V_{CC}=200~V;~I_C=20~mA,~I_{B1}=-I_{B2}=2.0~mA$	t _{off}		10	μs

SAFE OPERATING AREA (See graph below and also reference test method 3053 of MIL-STD-750.)


 DC Tests

 $T_C = +25 \, ^{\circ} \text{C}$, 1 Cycle, $t = 1.0 \, \text{s}$

 Test 1
 $V_{CE} = 5.0 \, \text{V}$, $I_C = 1.0 \, \text{A}$ Both Types

 Test 2
 $V_{CE} = 350 \, \text{V}$, $I_C = 14 \, \text{mA}$ 2N3439UA

 Test 3
 $V_{CE} = 250 \, \text{V}$, $I_C = 20 \, \text{mA}$ 2N3440UA

Maximum Safe Operating graph (continuous dc)

GRAPHS

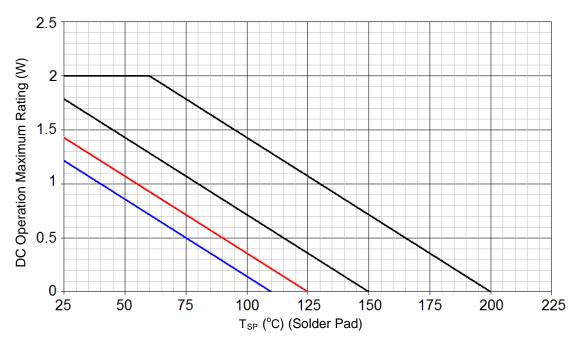
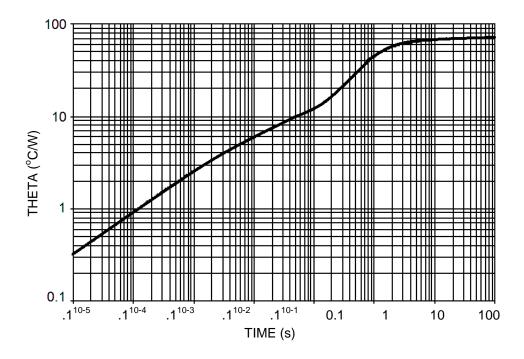
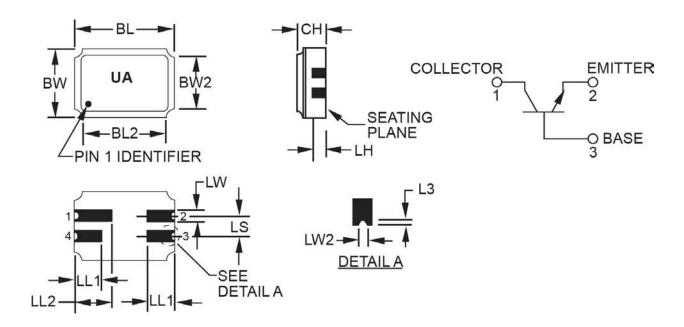


FIGURE 1

Temperature-Power Derating Curve

NOTES: Thermal Resistance Junction to Solder Pad = 70.0 °C/W Max Finish-Alloy Temp = 175.0 °C




FIGURE 2

Maximum Thermal Impedance

NOTE: $T_C = +25 \, \text{C}$, Thermal Resistance R _{$\theta JSP = 70.0 \, \text{C/W}$, Pdiss = 2 W.}

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- Dimension "CH" controls the overall package thickness. When a window lid is used, dimension "CH" must increase by a minimum of .010 inch (0.254 mm) and a maximum of .040 inch (1.020 mm).
- 4. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
- 5. Dimensions " LW2" minimum and "L3" minimum and the appropriate castellation length define an unobstructed three-dimensional space traversing all of the ceramic layers in which a castellation was designed. (Castellations are required on bottom two layers, optional on top ceramic layer.) Dimension " LW2" maximum and "L3" maximum define the maximum width and depth of the castellation at any point on its surface. Measurement of these dimensions may be made prior to solder dipping.
- 6. The co-planarity deviation of all terminal contact points, as defined by the device seating plane, shall not exceed .006 inch (0.15mm) for solder dipped leadless chip carriers.
- 7. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

	Dimensions				
Symbol	Inc	Inches M		neters	Note
	Min	Max	Min	Max	
BL	.215	.225	5.46	5.71	
BL2		.225		5.71	
BW	.145	.155	3.68	3.93	
BW2		.155		3.93	
CH	.061	.075	1.55	1.90	3
L3	.003	.007	0.08	0.18	5
LH	.029	.042	0.74	1.07	
LL1	.032	.048	0.81	1.22	
LL2	.072	.088	1.83	2.23	
LS	.045	.055	1.14	1.39	
LW	.022	.028	0.56	0.71	
LW2	.006	.022	0.15	0.56	5

Pin no.	1	2	3	4
Transistor	Collector	Emitter	Base	N/C