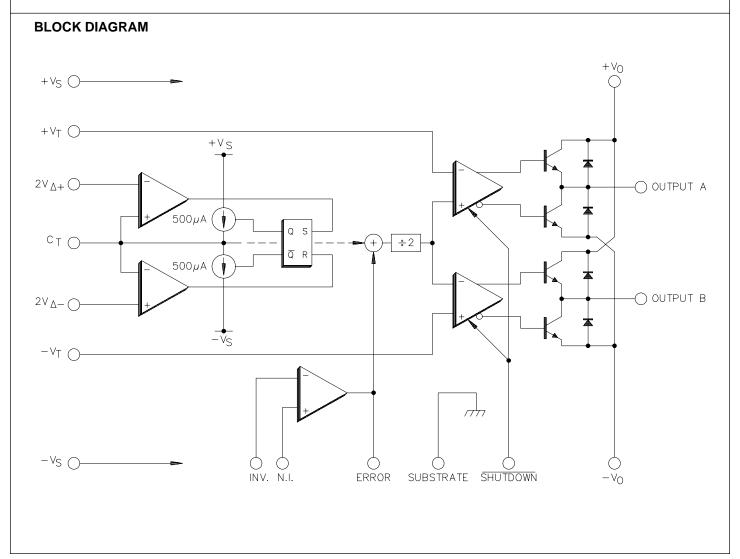


DC MOTOR PULSE WIDTH MODULATOR

DESCRIPTION

The SG1731 is a pulse width modulator circuit designed specifically for DC motor control. It provides a bi-directional pulse train output in response to the magnitude and polarity of an analog error signal input. The device is useful as the control element in motor-driven servo systems for precision positioning and speed control, as well as in audio modulators and amplifiers using carrier frequencies to 350 KHz.


The circuit contains a triangle waveform oscillator, a wideband operational amplifier for error voltage generation, a summing/scaling network for level-shifting the triangle waveform, externally programmable PWM comparators and dual ± 100 mA, ± 22 V totem pole drivers with commutation diodes for full bridge output. A SHUTDOWN terminal forces the drivers into a floating high-impedance state when driven LOW. Supply voltage to the control circuitry and to the output drivers may be from either dual positive and negative supplies, or single-ended.

FEATURES

- ±3.5V to ±15V control supply
- ±2.5V to ±22V driver supply
- Dual 100mA source/sink output drivers
- 5KHz to 350KHz oscillator range
- High slew rate error amplifier
- Adjustable deadband operation
- Digital SHUTDOWN input

HIGH RELIABILITY FEATURES - SG1731

- ♦ Available to MIL-STD-883
- ♦ LMI level "S" processing available

ABSOLUTE MAXIMUM RATINGS (Note1

Supply Voltage (±V _s)	±18V
Analog Inputs	±V _s
Digital Inputs (SHUTDOWN)	
Output Driver Supply Voltage (±V ₀)	
Source/Sink Output Current (continuous)	
Source/Sink Output Current (peak, 500ns)	400mA
Note 1. Values beyond which damage may occur.	

Output Driver Diode Current (continuous) 200mA
Output Driver Diode Current (peak, 500ns) 400mA
Operating Junction Temperature
Hermetic (J - Package) 150°C
Plastic (N - Package) 150°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 Seconds) 300°C
RoHS Peak Package Solder Reflow Temp.(40 sec. max. exp.) 260 ℃ (+0, -5)

THERMAL DATA

J Package:

Ν

Thermal Resistance-Junction to Case, θ_{10}	30°C/W
Thermal Resistance-Junction to Ambient, θ_{IA}	80°C/W
Package:	
Thermal Resistance-Junction to Case, θ_{10}	40°C/W

Thermal Resistance-Junction to Ambient, θ_{IA} 65°C/W

Note A.	Junction Temperature Calculation: $T_1 = T_A + (P_D \times \theta_{IA})$.
Note B.	The above numbers for θ_{JC} are maximums for the limiting thermal
	resistance of the package in a standard mounting configuration.
	The θ_{JA} numbers are meant to be guidelines for the thermal
	performance of the device/pc-board system. All of the above
	assume no ambient airflow.

RECOMMENDED OPERATING CONDITIONS (Note 2)

Supply Voltage Range (±V _S)	±3.5V to ±15V
Error Amp Common-Mode Range	$-V_s + 3V$ to $V_s - 3V$
Output Driver Supply Voltage Range	±2.5V to ±22V
Source/Sink Output Current (continuous	s) 100mA
Source/Sink Output Current (peak, 500)	ns) 200mA
Output Driver Diode Current (continuous	s) 100mA
Output Driver Diode Current (peak, 500)	ns) 200mA

Oscillator Frequency Range	10Hz to 350KHz
Oscillator Voltage (Peak-to-Peak)	1V to 10V
Oscillator Timing Capacitor (C _T)	200pF to 2.5μF
Operating Ambient Temperature Range	
SG1731	55°C to 125°C
SG2731	25°C to 85°C
SG3731	0°C to 70°C

Note 2. Range over which the device is functional and parameter limits are guaranteed.

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG1731 with -55°C ≤ T_A ≤ 125°C, SG2731 with $-25^{\circ}\text{C} \le \text{T}_{A} \le 85^{\circ}\text{C}$, SG3731 with $0^{\circ}\text{C} \le \text{T}_{A} \le 70^{\circ}\text{C}$, $\text{V}_{S} = \pm 15\text{V}$, and $\text{V}_{O} = \pm 22\text{V}$. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)

Parameter	Test Conditions	1	SG1731/2731/3731		
		Min.	Тур.	Max.	
Oscillator Section		I	l		
C _⊤ Charging Current	T _A = 25°C	450	500	550	μΑ
·	$T_A = T_{MIN}$ to T_{MAX}	400		600	μΑ
2V∆± Input Bias Current	$V_{CM} = \pm 5V$			-20	μΑ
Initial Oscillator Frequency	$C_{T}^{(1)} = 1000 \text{pF}, 2V\Delta \pm = \pm 5V, T_{\Delta} = 25^{\circ}\text{C}$	22.5	25.0	27.5	KHz
Temperature Stability (Note 3)	$C_{T} = 1000 pF, 2V\Delta \pm = \pm 5V$			10	%
Error Amplifier Section (Note 5)					
Input Offset Voltage				10	m∨
Input Bias Current				3	μΑ
Input Offset Current				600	nA
Open Loop Voltage Gain	$R_1 = 2K\Omega$	70			dB
Output Voltage Swing	$R_{i}^{L} = 2K\Omega$	±10			V
Common-Mode Rejection Ratio	L	70			dB
Slew Rate (Notes 3 and 4)	$T_A = 25^{\circ}C$	5	10		V/μs
Unity Gain Bandwidth (Notes 3 and 4)	$T_A^{\circ} = 25^{\circ}C$	0.7	1		MHz
PWM Comparators				1	
Input Bias Current	$\pm V_T = \pm 3V$			6	μΑ

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test Conditions	SG1731/2731/373 Min.	I Units
SHUTDOWN Section			
Logic Threshold SHUTDOWN HIGH Current SHUTDOWN LOW Current	$ \begin{aligned} -V_S &= -3.5V \text{ to } -15V \\ V_{SHUTDOWN} &= -V_S + 2.4V \\ V_{SHUTDOWN} &= -V_S \end{aligned} $	V _s +0.8 V _s +2. 400 -1.0	μΑ
Output Drivers (Each Output)	onorsom 0		
HIGH Output Voltage	I _{SOURCE} = 20mA	19.2	V
LOW Output Voltage	I _{SOURCE} = 100mA I _{SINK} = 20mA	19.0 -19.2 -19.2	
Driver Risetime Driver Falltime	$I_{SINK}^{OM} = 100 \text{mA}$ $C_{L} = 1000 \text{pF}$ $C_{I} = 1000 \text{pF}$	300 300	ns
Total Supply Current		<u> </u>	
V _s Supply Current V _o Supply Current	$V_{\text{SHUTDOWN}} = -V_{\text{S}} + 0.8V$ $V_{\text{SHUTDOWN}} = -V_{\text{S}} + 0.8V$	14 6	mA mA

Note 3. These parameters, although guaranteed, are not tested in production.

Note 4. Unity Gain Inverting $10K\Omega$ Feedback Resistance.

Note 5. $V_{CM} = \pm 12V$.

APPLICATION INFORMATION

SUPPLY VOLTAGE

The SG1731 requires a supply voltage for the control circuitry (V_s) and for the power output drivers (V_o). Each supply may be either balanced positive and negative with respect to ground, or single-ended. The only restrictions are:

- 1. The voltage between +V $_{\rm S}$ and -V $_{\rm S}$ must be at least 7.0V; but no more than 44V.
- 2. The voltage between +V $_{\rm o}$ and -V $_{\rm o}$ must be at least 5.0V; but no more than 44V.
- 3.+V_o must be at least 5V more positive than -V_s. This eliminates the combination of a single-ended positive control supply with a single-ended negative driver supply.

SUBSTRATE CONNECTION

The substrate connection (Pin 10) must always be connected to either $-V_s$ or $-V_o$, whichever is more negative. The substrate must also be well bypassed to ground with a high quality capacitor.

OSCILLATOR

The triangle oscillator consists of two voltage comparators, a set/reset flip-flop, a bi-directional 500 μ A current source, and an external timing capacitor C_{τ} . A positive reference voltage (2V Δ +) applied to Pin 2 determines the positive peak value of the triangle, and a negative reference voltage (2V Δ -) at Pin 7 sets the negative peak value of the triangle waveform.

Since the value of the internal current source is fixed at a nominal $\pm 500 \mu A$, the oscillator period is a function of the selected peak-to-peak voltage excursion and the value of $C_{\scriptscriptstyle T}$. The theoretical expression for the oscillator period is:

$$T_{OSC} = \frac{2C_T dV}{5 \times 10^{-4}}$$
 (Eq.1)

where $\mathbf{C}_{_{\!\!\mathsf{T}}}$ is the timing capacitor in Farads and dV is $\mathbf{V}_{_{\!\!\mathsf{OSC}}}$ in Volts peak-to-peak.

As a design aid, the solutions to Equation 1 over the recommended range of $T_{\rm OSC}$ and $V_{\rm OSC}$ are given in graphic form in Figure 1. The lower limit on $T_{\rm OSC}$ is 1.85 μ s, corresponding to a maximum frequency of 350 KHz. The maximum value of $V_{\rm OSC}$, $(2V\Delta+)$ - $(2V\Delta-)$, is 10V peak-to-peak for linear waveforms.

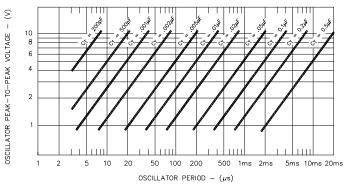


FIGURE 1 - SG1731 OSCILLATOR PERIOD VS. $V_{\rm osc}$ AND $C_{\rm T}$

ERROR AMPLIFIER

The error amplifier of the SG1731 is a conventional internally-compensated operational amplifier with low output impedance. All of the usual feedback and frequency compensation techniques may be use to control the closed-loop gain characteristics. The control supply voltage $\pm V_{\rm S}$ will determine the input common mode range and output voltage swing; both will extend to within 3V of the $V_{\rm S}$ supply.

PULSE WIDTH MODULATION

Pulse width modulation occurs by comparing the triangle waveform to a fixed upper (+V $_{\rm T}$) and lower (-V $_{\rm T}$) threshold voltage. A crossing above the upper threshold causes Output A to switch to the HIGH state, and a crossing below

APPLICATION INFORMATION (continued)

the lower threshold causes Output B to switch to the HIGH state. If $\pm V_s$ is less than $\pm 8V$ then $\pm V_{\tau}$ can be obtained with resistors from $\pm V_s$. If $\pm V_s$ is greater than $\pm 8V$ use zeners.

Threshold crossings are generated by shifting the triangle waveform up and down with the error voltage (Pin 5). A positive error voltage will result in a pulse width modulated output at Driver A (Pin 13). Similarly, a negative error voltage produces a pulse train at Driver B (Pin 12). Figure 2 illustrates this process for the case where V_{Δ} + is greater than V_{τ} .

It is important to note that the triangle shifting circuit also attenuates the waveform seen at $C_{\scriptscriptstyle T}$ by a factor of 2. This results in a waveform at the PWM comparators with a positive peak of $V\Delta$ + and a negative peak of $V\Delta$ -, and must be taken into account when selecting the values for $+V_{\tau}$ and $-V_{\tau}$.

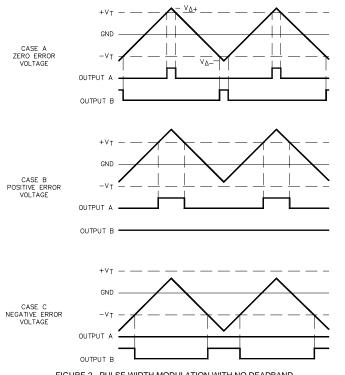
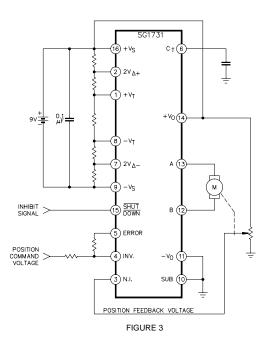
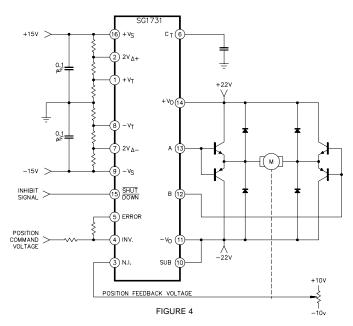
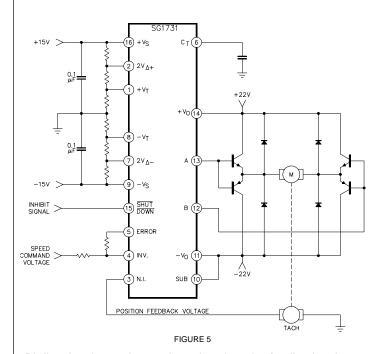
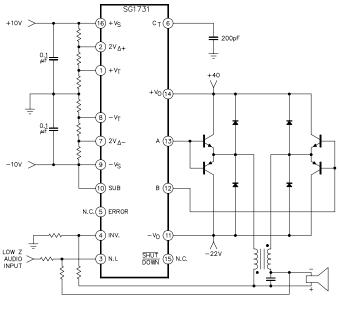




FIGURE 2 - PULSE WIDTH MODULATION WITH NO DEADBAND

APPLICATION CIRCUITS




In this simple battery-powered position servo, the control supply and driver supply are both single-ended positive with respect to ground.

A high torque position servo is obtained by buffering the output drivers to obtain higher output current.

APPLICATION CIRCUITS

Bi-directional speed control results when the feedback voltage transducer is a tachometer.

The two-quadrant transfer function of the SG1731 is ideal for pulse width modulated audio power amplifiers.

FIGURE 6

CONNECTION DIAGRAMS & ORDERING INFORMATION (See Note Below)

Package	Part No.	Ambient Temperature Range	Connection Diagram
16-PIN CERAMIC DIP J - PACKAGE	SG1731J/883B SG1731J SG2731J SG3731J	-55°C to 125°C -55°C to 125°C -25°C to 85°C 0°C to 65°C	+V _T 2V _{Δ+} 2 15 SHUTDOWN N. I. INPUT 3 14 +V _o INV. INPUT 4 13 OUTPUT A ERROR 5 12 OUTPUT B
16-PIN PLASTIC DIP N - PACKAGE	SG2731N SG3731N N Package: RoHS / Pb-free	-25°C to 85°C 0°C to 65°C - 100% Matte Tin Lead Finish	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note 1. All packages are viewed from the top.

Note 2. Contact factory for flatpack and leadless chip carrier availability.