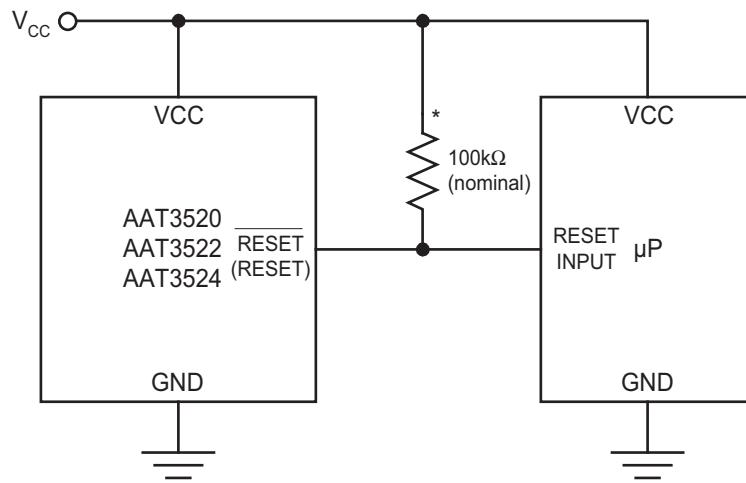


General Description

The AAT3520 series of PowerManager products is part of AnalogicTech's Total Power Management IC™ (TPMIC™) product family. These microprocessor reset circuits are ideal for monitoring voltage supplies in portable systems, where extended battery life is critical. They provide a low-cost, reliable solution by eliminating the need for external components. The AAT3520 series operates by monitoring the system power supply voltage. When the input voltage drops below a fixed threshold, the device asserts a reset signal for a fixed time period after V_{CC} has risen back above the fixed threshold; 30ms and 150ms minimum periods are available. The AAT3520 product series is guaranteed to operate down to 1.2V and is designed to ignore fast line transients appearing on V_{CC} . The AAT3520 series is available with three output stage versions: AAT3520 push-pull active high output; AAT3522 push-pull active low output; and AAT3524 open drain active low output. The quiescent supply current is extremely low, typically 1 μ A, making it ideal for portable battery-operated equipment.

The AAT3520/2/4 are available in a Pb-free, 3-pin SOT23 package and are specified over the -40°C to +85°C operating temperature range.


Features

- Input Voltage Range: 1.2V to 5.5V
- Operation Down to 1.2V
- Extremely Low Quiescent Current: <2 μ A
- High Accuracy Detection Threshold: $\pm 1.5\%$
- Monitor Power Supply Voltages
- Fixed Thresholds from 2.2V to 4.6V
- -Reset Pulse Width Options
 - Minimum 30ms or 150ms or 300ms
 - Fast Propagation Delay <20 μ s
- Available Output Configurations:
 - Open-Drain Output
 - CMOS Active High Output
 - CMOS Active Low Output
- Temperature Range: -40°C to +85°C
- 3-Pin SOT23 Package
- 4kV ESD Rating

Applications

- Cell Phones
- Embedded Systems
- Intelligent Instruments
- Notebook Computers
- Portable Electronics

Typical Application

*AAT3524 Only

Pin Descriptions

Pin #	Symbol	Function
1	GND	Ground connection.
2	RESET (AAT3520)	RESET output remains high while V_{CC} is below the reset threshold and remains so for a fixed time period after V_{CC} raises above the reset threshold.
	RESET (AAT3522, AAT3524)	RESET output remains low while V_{CC} is below the reset threshold and remains so for a fixed time period after V_{CC} raises above the reset threshold.
3	VCC	Supply voltage (+1.2V to +5.5V). Due to extremely low operating current, place a 10nF capacitor between VCC and GND.

Part Number Descriptions

Part Number	Part Description
AAT3520	Reset Output Push Pull Active High with Delay
AAT3522	Reset Output Push Pull Active Low with Delay
AAT3524	Reset Output Open Drain Active Low with Delay

Pin Configuration

**SOT23-3
(Top View)**

Absolute Maximum Ratings¹

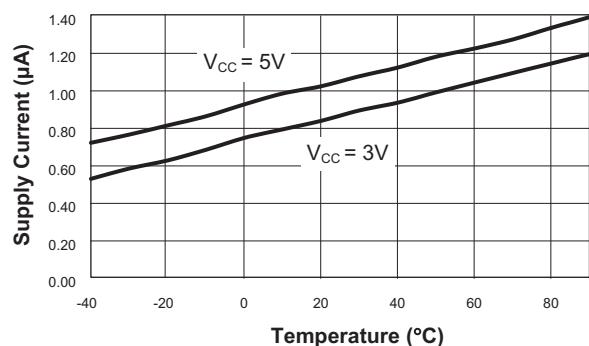
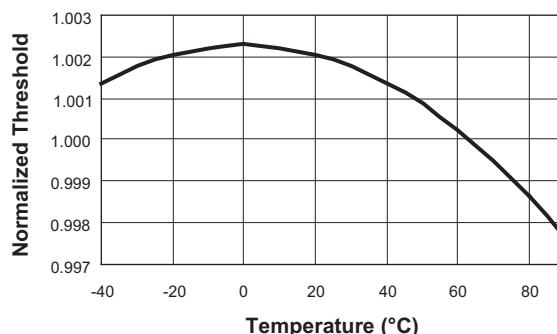
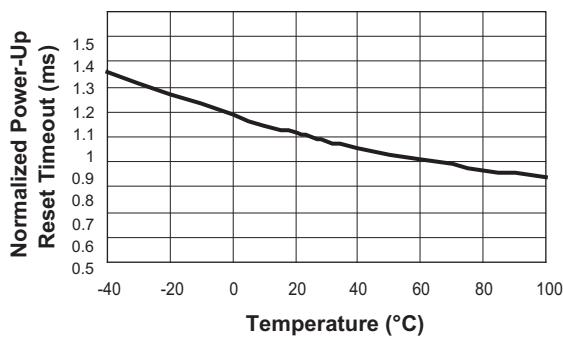
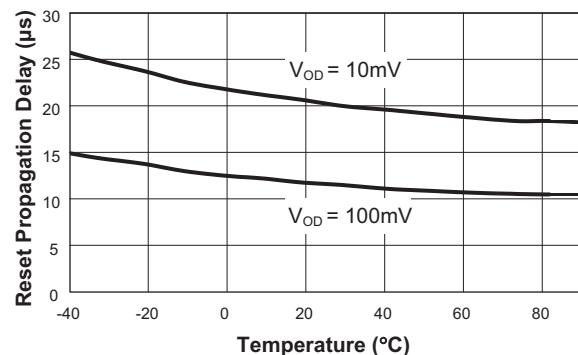
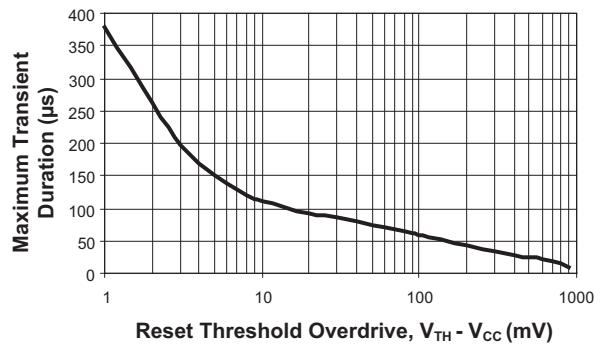
T_A = 25°C, unless otherwise noted.

Symbol	Description	Value	Units
V_{CC}	V_{CC} to GND	-0.3 to 5.5	V
V_{RESET}	RESET to GND (Push-Pull Output)	-0.3 to V_{CC} + 0.3	V
	RESET to GND (Open Drain Output)	-0.3 to 5.5	
I_{MAX}	Maximum Continuous Input Current	20	mA
I_{RESET}	RESET/RESET Current	20	mA
dV_{CC}/dt	Rate of Rise of V_{CC}	100	V/ μ s
T_J	Operating Junction Temperature Range	-40 to 150	°C
T_{LEAD}	Maximum Soldering Temperature (at Leads, 10 sec.)	300	°C

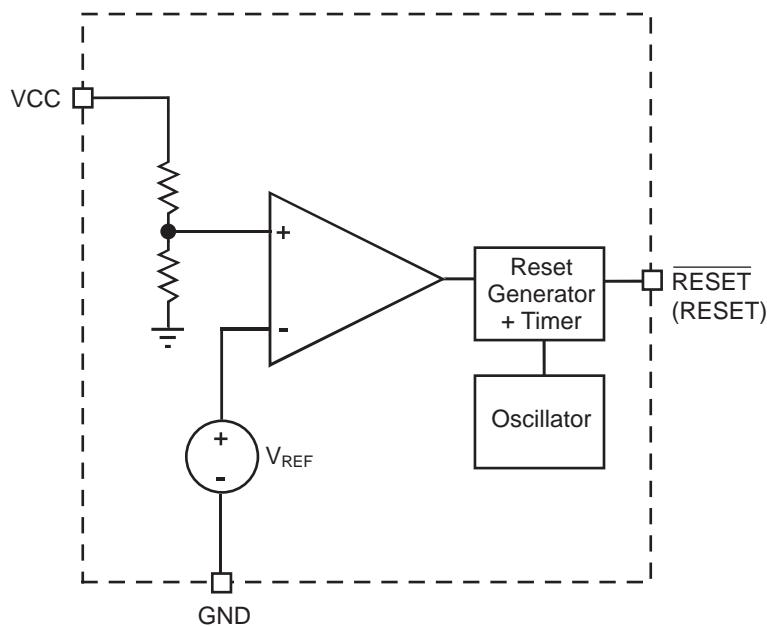
Thermal Information²

Symbol	Description	Value	Units
Θ_{JA}	Maximum Thermal Resistance	200	°C/W
P_D	Maximum Power Dissipation	320	mW

1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.






2. Mounted on an FR4 board.

Electrical Characteristics


$V_{IN} = 5V$, $T_A = -40^\circ C$ to $+85^\circ C$, unless otherwise noted. Typical values are at $T_A = 25^\circ C$; $V_{CC} = 5V$ for 4.63/4.38V versions; $V_{CC} = 3.3V$ for 3.08/2.93V versions; $V_{CC} = 3.0V$ for 2.63V version; $V_{CC} = 2.5V$ for 2.32/2.2V versions.

Symbol	Description	Conditions	Min	Typ	Max	Units
V_{CC}	Operation Voltage	$T_A = 0^\circ C$ to $+70^\circ C$	1.0		5.5	V
		$T_A = -40^\circ C$ to $+85^\circ C$	1.2		5.5	
I_Q	Quiescent Current	$V_{CC} = 5.5V$		1.05	3	μA
		$V_{CC} = 3V$		0.85	2	
V_{TH}	RESET Threshold (Table 1)	$T_A = 25^\circ C$	$V_{TH} - 1.5\%$	V_{TH}	$V_{TH} + 1.5\%$	V
		$T_A = -40^\circ C$ to $+85^\circ C$	$V_{TH} - 2.5\%$	V_{TH}	$V_{TH} + 2.5\%$	
$\Delta V_{TH}/^\circ C$	RESET Threshold Temperature Coefficient			40		ppm/ $^\circ C$
t_p	RESET Propagation Delay	$V_{CC} = V_{TH}$ to $(V_{TH} - 100mV)$		15		μs
t_{RDY}	RESET Active Timeout Period	-50 Option	30	50	100	ms
		-200 Option	150	250	400	
		-400 Option	300	500	800	
V_{OL}	RESET Low Output Voltage AAT3522, AAT3524	$I_{SINK} = 1.2mA$, $V_{CC} = V_{TH(min)}$, $V_{TH} \leq 3.08V$, RESET Asserted			0.3	V
		$I_{SINK} = 3.2mA$, $V_{CC} = V_{TH(min)}$, $V_{TH} > 3.08V$, RESET Asserted			0.4	
V_{OH}	RESET High Output Voltage AAT3522	$I_{SOURCE} = 800\mu A$, $V_{TH} > 3.08V$, $V_{CC} > V_{TH(max)}$	$V_{CC} - 1.5$			V
		$I_{SOURCE} = 500\mu A$, $V_{TH} \leq 3.08V$, $V_{CC} > V_{TH(max)}$	0.8 V_{CC}			
V_{OL}	RESET Low Output Voltage AAT3520	$I_{SINK} = 1.2mA$, $V_{CC} > V_{TH(max)}$, $V_{TH} \leq 3.08V$, RESET Not Asserted			0.3	V
		$I_{SINK} = 3.2mA$, $V_{CC} > V_{TH(max)}$, $V_{TH} > 3.08V$, RESET Not Asserted			0.4	
V_{OH}	RESET High Output Voltage AAT3520	$I_{SOURCE} = 500\mu A$, $V_{CC} > 2.1V$, RESET Asserted	0.8 V_{CC}			V
		$I_{SOURCE} = 50\mu A$, $V_{CC} > 1.2V$, RESET Asserted	0.8 V_{CC}			
I_{DOFF}	RESET Leakage Current AAT3524	$V_{CC} > V_{TH}$			1	μA

Typical Characteristics

Supply Current vs. Temperature

Normalized Reset Threshold vs. Temperature

Normalized Power-Up Reset Timeout vs. Temperature

Power-Down Reset Propagation Delay vs. Temperature

Maximum Transient Duration vs. Reset Threshold Overdrive

Functional Block Diagram

Functional Description

General

During start-up, the reset pin on a microprocessor ensures that it is fully reset and starts up in a known condition. The AAT3520 series of microprocessor reset devices monitor the supply voltage to a microprocessor

and assert a reset signal whenever the V_{CC} voltage falls below a factory-programmed threshold. This threshold is accurate within $\pm 1.5\%$ at 25°C and within $\pm 2.5\%$ over the entire operating temperature range. The reset signal remains asserted for a fixed time period (t_{RDY}) after V_{CC} has risen above the threshold, as shown in Figure 1. See Ordering Information for available RESET active timeout periods.

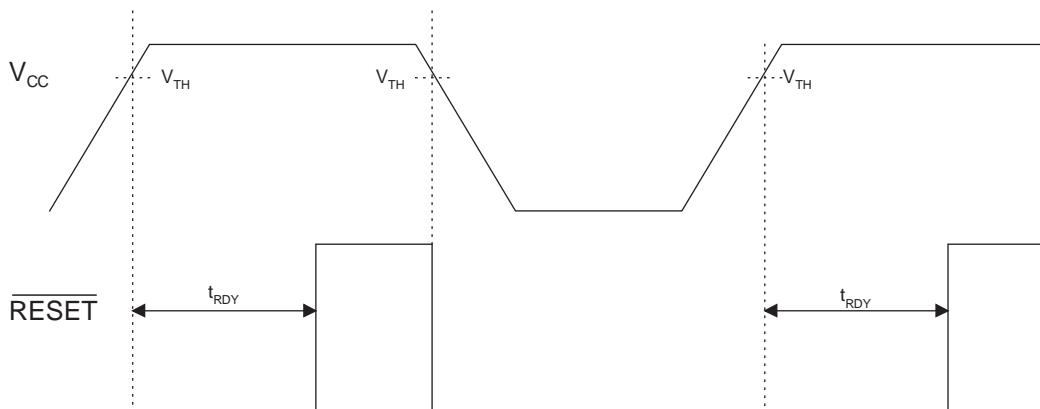
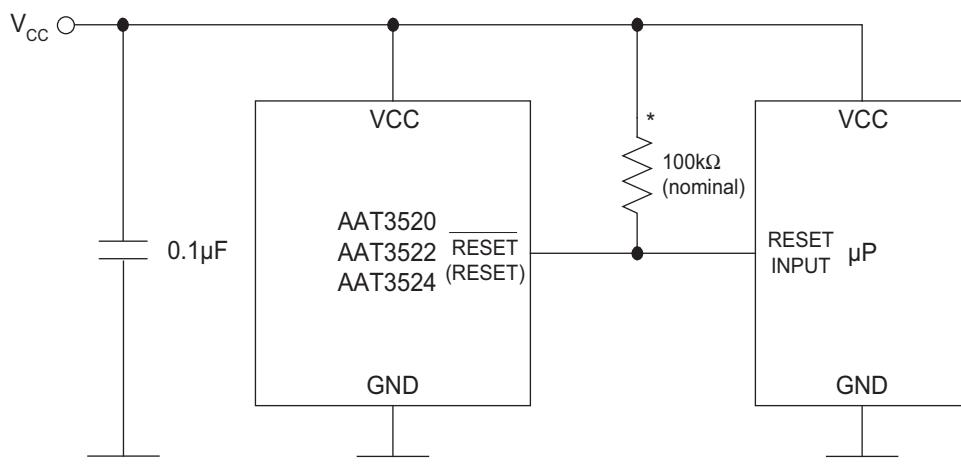


Figure 1: Reset Timing Diagram (AAT3522, AAT3524).


Applications Information

Reset Output Options

The AAT3524 has an active low open drain output and the AAT3520/2 have a push-pull output. The AAT3524 may be used in multiple voltage systems with an external pull-up resistor. This allows the AAT3524 to interface to microprocessors with higher supply voltages up to 5.5V (Figure 3). In the event of a power down or brown-out condition, the reset signal remains valid until the V_{CC} drops below 1.2V. To ensure validity down to ground, an external $100k\Omega$ resistor should be connected between the RESET output and GND.

Supply Voltage Transient Behavior

In some cases, fast negative transients of short duration can appear on the V_{CC} power supply. The AAT3520 series devices provide some immunity to line transients which can generate invalid reset pulses. Figure 1 shows typical behavior to short duration pulses versus RESET comparator overdrive. As shown in the Maximum Transient Duration vs. Reset Threshold Overdrive graph, when the transient voltage becomes larger, the time allowed before asserting a reset becomes shorter (i.e., typically a transient of 100mV below the reset threshold would have to present for more than 50 μ s to cause a reset). Immunity can be increased by the addition of a small bypass capacitor of $0.1\mu F$ connected as closely to the V_{CC} pin as possible.

*AAT3524 Only

Figure 2: Using Recommended Bypass Capacitor.

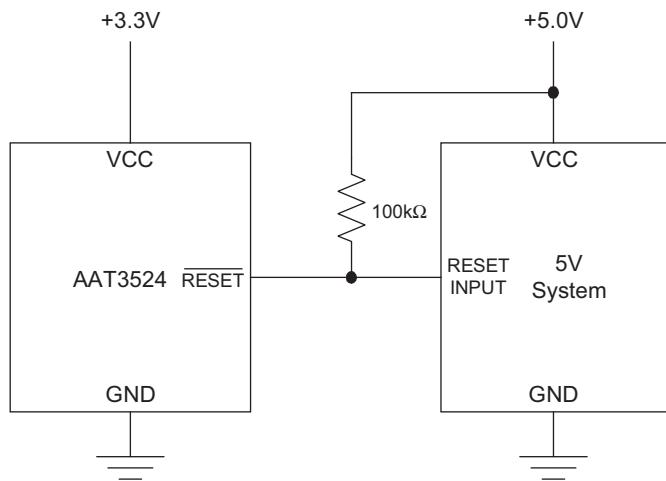
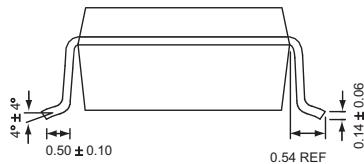
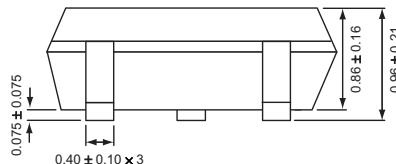
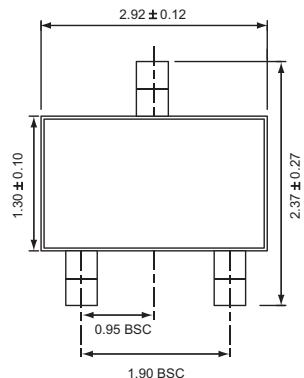


Figure 3: Using AAT3524 Open Drain Output with Multiple Supplies.

PowerManager™
MicroPower™ Microprocessor Reset Circuit
Factory Trimmed Reset Thresholds¹ and Ordering Information




Ordering Part Number ²	Marking ³	Minimum Reset Active (ms)	Reset Threshold Voltage, V_{TH} (V)				
			$T_A = 25^\circ C$			$T_A = -40^\circ C$ to $+85^\circ C$	
			Min	Typ	Max	Min	Max
AAT3522IGY-2.20-200-T1	DBXYY	150	2.167	2.200	2.233	2.145	2.255
AAT3520IGY-2.32-200-T1		150					
AAT3522IGY-2.32-200-T1	DTXYY	150	2.285	2.320	2.355	2.262	2.378
AAT3524IGY-2.32-200-T1		150					
AAT3522IGY-2.45-200-T1	DXXYY	150	2.413	2.450	2.487	2.389	2.511
AAT3520IGY-2.63-200-T1	GNXYY	150					
AAT3522IGY-2.63-200-T1	CAXYY	150	2.591	2.630	2.669	2.564	2.696
AAT3524IGY-2.63-200-T1	CWXYY	150					
AAT3520IGY-2.93-200-T1	CZXYY	150					
AAT3522IGY-2.93-50-T1	FVXYY	30					
AAT3522IGY-2.93-200-T1	CCXYY	150	2.886	2.930	2.974	2.857	3.003
AAT3524IGY-2.93-200-T1	FPXYY	150					
AAT3520IGY-3.08-50-T1	EFXYY	30					
AAT3520IGY-3.08-200-T1	CNXYY	150					
AAT3522IGY-3.08-50-T1	CYXYY	30					
AAT3522IGY-3.08-200-T1	CBXYY	150	3.034	3.080	3.126	3.003	3.157
AAT3524IGY-3.08-200-T1	BGXYY	150					
AAT3524IGY-3.08-400-T1	J7XYY	300					
AAT3520IGY-4.38-200-T1	FUXYY IVXYY	150					
AAT3522IGY-4.38-200-T1		150	4.314	4.380	4.446	4.271	4.490
AAT3524IGY-4.38-200-T1		150					
AAT3520IGY-4.63-200-T1	HKXYY	150					
AAT3522IGY-4.63-200-T1	DAXYY	150					
AAT3524IGY-4.63-200-T1	DUXYY	150	4.561	4.630	4.699	4.514	4.746

1. Contact Local Sales Office for custom trimmed options.

 2. Sample stock is generally held on part numbers listed in **BOLD**.

3. XYY = assembly and date code.

Package Information

SOT23-3

All dimensions in millimeters.

Advanced Analog Technologies, Inc.
 3230 Scott Boulevard, Santa Clara, CA 95054
 Phone (408) 737-4600
 Fax (408) 737-4611

© Advanced Analog Technologies, Inc.
 AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice. Except as provided in AnalogicTech's terms and conditions of sale, AnalogicTech assumes no liability whatsoever, and AnalogicTech disclaims any express or implied warranty relating to the sale and/or use of AnalogicTech products including liability or warranties relating to fitness for particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed. AnalogicTech and the AnalogicTech logo are trademarks of Advanced Analog Technologies Incorporated. All other brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.

