

- SAW Frequency Stabilization
- Fundamental-Mode Oscillation at 1090.0 MHz
- Ideal for ATC/TCAS Transponder Applications
- Complies with Directive 2002/95/EC (RoHS)


The frequency of this oscillator is stabilized by UHF surface-acoustic-wave (SAW) technology, providing excellent performance in a compact, rugged oscillator operating at the fundamental frequency of 1090.0 MHz. The highly-reliable HO1081-3 is designed for use in Mode-S Air Traffic Control Transponders/Traffic Alert and Collision Avoidance Systems (TCAS).

Absolute Maximum Ratings

Rating	Value	Units		
DC Supply Voltage		0 to +13	VDC	
Ambient Temperature	Powered	-55 to +105	\$	
	Storage	-55 to +125		

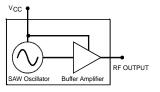
HO1081-3

1090.0 MHz SAW Oscillator

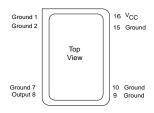
Dip 16-8 Case

Electrical Characteristics

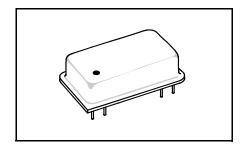
	Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Operating Frequency	Absolute Frequency	f _O	1, 7	1089.75	1090.00	1090.25	MHz
	Tolerance from 1090.0 MHz	Δf_{O}	1, 7			±250	kHz
RF Output Power		Po	3, 6	+10	+12	+13	dBm
Discrete Spurious	Second Harmonics				-25	-20	
	Third and Higher Harmonics		2, 3, 4		-35	-30	dBc
	Nonharmonic				<-100	-80	
SSB Phase Noise	1 kHz Offset		2, 3, 4			-90	dBc/Hz
	10 kHz Offset		2, 3, 4			-110	UDC/FIZ
RF Impedance	Nominal Impedance	Z _O	3		50		Ω
	Operating Load VSWR	G_L	3, 5			1.5:1	
DC Power Supply	Operating Voltage	V_{CC}	3, 6	11.75	12.00	12.25	VDC
	Operating Current	Icc	3, 0		37	40	mA
Operating Ambient Temperature		T _A	3, 6	-55		+105	${\mathfrak C}$
Lid Symbolization (YY=Year, WW=Week)			RFM HO1081-3 YYWW				

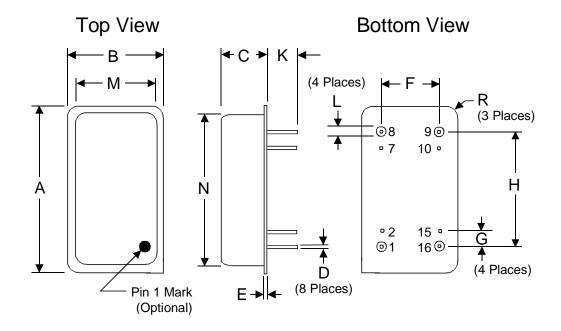


CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. COCOM CAUTION: Approval by the U.S. Department of Commerce is required prior to export of this device.


Notes:

- One or more of the following United States patents apply: 4,760,352; 5,787,117; and 7,260,375.
- 2. Unless noted otherwise, all specifications are listed at $T_A = +25 \text{ \mathfrak{C} } \pm 2 \text{ \mathfrak{C}}$, $V_{CC} = \text{nominal voltage } \pm 0.01 \text{ VDC}$, and load impedance = 50 Ω with VSWR \leq 1.5:1.
- 3. The design, manufacturing process, and specifications of this device are subject to change without notice.
- Applies to oscillator only and not to sidebands caused by external electrical or mechanical sources. (Dedicated external voltage regulation with low-frequency filtering for the DC power supply and proper circuit board layout are recommended for optimum spectral purity.)
- For specified maximum operating load VSWR any angle, at F_O. No instability or damage will occur for any passive load impedance.
- 6. For any combination of V_{CC} and T_A within the specified operating ranges.
- 7. Applies for any combination of Note 5 and 6 conditions.


BLOCK DIAGRAM


ELECTRICAL CONNECTIONS

DIP16-8 Metal Dual-Inline Package with 8 Leads in a 16-lead DIP Configuration

Dimension	mm		Inches		
	MIN	MAX	MIN	MAX	
А	_	25.02	_	0.985	
В	_	12.83	_	0.505	
С	I	6.35	1	0.250	
D	0.40	0.51	0.016	0.020	
E	0.64 Nominal		0.025 Nominal		
F	7.62 Nominal		0.300 Nominal		
G	2.54 Nominal		0.100 Nominal		
Н	17.78 Nominal		0.700 Nominal		
К	3,39	6.73	0.130	0.265	
L	1.30	_	0.051	_	
М		11.18		0.440	
N		22.60		0.890	
R	1.75	2.26	0.069	0.089	

