
RF3600E

- Ideal Front-End Filter for European Wireless Receivers
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Complies with Directive 2002/95/EC (RoHS)

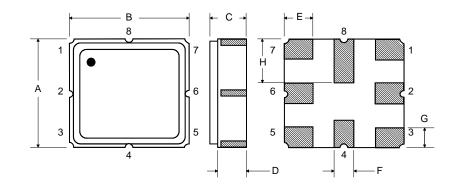
The RF3600E is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter designed to provide front-end selectivity in 868.6 MHz receivers. Receiver designs using this filter include superheterodyne with 10.7 MHz or lower intermediate frequencies, plus direct conversion and superregeneratives. Typical applications of these receivers are wireless remote-control and security devices operating in Europe under ETSI I-ETS 300 220.

868.60 MHz SAW Filter

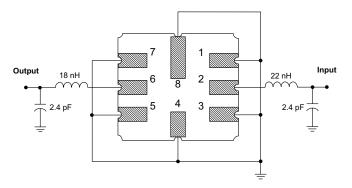
Characteristic			Notes	Minimum	Typical	Maximum	Units
Center Frequency @ 25℃		f _C	1, 2, 3		868.60		MHz
Insertion Loss		IL	1, 3		1.8	2.3	dB
3 dB Bandwidth		BW ₃	1, 2, 3		1600	2100	kHz
Passband Ripple, 868 to 870 MHz					0.8	1.5	dB _{P-P}
	10 to 800 MHz			47	50		- dB
	800 to 858 MHz		1, 3	32	35		
	858 to 862 MHz			25	28		
Attenuation:	862 to 864 MHz			17	20		
(relative to IL _{MIN})	872 to 876 MHz			19	22		
	876 to 888 MHz			15	18		
	888 to 890 MHz			32	35		
	902 to 1000 MHz			35	38		
Temperature	Freq. Temp. Coefficient	FTC	3, 4		0.032		ppm/℃ ²
Frequency Aging	Absolute Value during the First Year	fA	5		<±10		ppm/yr
Impedance @ f _C	Input $Z_{IN} = R_{IN} C_{IN}$	Z _{IN} 1		4.7 KΩ 1.57 pF			
	Output Z _{OUT} = R _{OUT} C _{OUT}	Z _{OUT}	'	3.8 KΩ 1.74 pF			
Lid Symbolization (in addition to Lot and/or Date Codes)					816 // `	YWWS	
Standard Reel Quantity Reel Size 7 Inch			9	500 Pieces/Reel			
Reel Size 13 Inch			7 9	3000 Pieces/Reel			

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

Notes:


- Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture which is connected to a 50 Ω test system with VSWR ≤ 1.2:1. The
 test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_c. Note that insertion loss and bandwidth and passband shape are dependent on
 the impedance matching component values and quality.
- 2. The frequency f_c is defined as the midpoint between the 3dB frequencies.
- 3. Where noted specifications apply over the entire specified operating temperature range of -40 to 90℃.
- 4. The turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_O [1 FTC (T_O T_C)^2]$.
- 5. Frequency aging is the change in fc with time and is specified at +65 °C or less. Aging may exceed the specification for prolonged temperatures above +65 °C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- 6. The design, manufacturing process, and specifications of this device are subject to change.
- 7. One or more of the following U.S. Patents apply: 4,54,488, 4,616,197, and others pending.
- 8. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
 - Tape and Reel Standard for ANSI / EIA 481.

Absolute Maximum Ratings

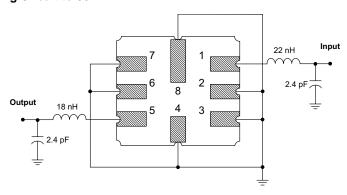

Rating	Value	Units
Input Power Level	10	dBm
DC Voltage	12	VDC
Storage Temperature	-40 to +125	C
Operable Temperature Range	-40 to +125	C
Soldering Temperature (10 seconds / 5 cycles maximum)	260	C

Electrical Connections

Pin	Connection	
1	Input Ground	
2	Input	
3	Ground	
4	Case Ground	
5	Output Ground	
6	Output	
7	Ground	
8	Case Ground	

Matching Circuit to 50 $\boldsymbol{\Omega}$

Case Dimensions


Dimension	mm			Inches			
Dilliension	Min	Nom	Max	Min	Nom	Max	
Α	2.87	3.0	3.13	0.113	0.118	0.123	
В	2.87	3.0	3.13	0.113	0.118	0.123	
С	1.14	1.27	1.40	0.045	0.050	0.055	
D	0.79	0.92	1.05	0.031	0.036	0.041	
E	0.62	0.75	0.88	0.024	0.029	0.034	
F	0.47	0.60	0.73	0.018	0.024	0.029	
G	0.47	0.60	0.73	0.018	0.024	0.029	
Н	1.07	1.20	1.33	0.042	0.047	0.052	

OPTIONAL

Electrical Connections

Pin	Connection		
1	Input		
2	Input Ground		
3	Ground		
4	Case Ground		
5	Output		
6	Output Ground		
7	Ground		
8	Case Ground		

Matching Circuit to 50 $\boldsymbol{\Omega}$

