

- Constant Current Output
- LED Drive Current up to 700 mA
- LED Strings from 2 V to 28 V
- PWM & Analog Dimming Control
- High Efficiency up to 95%
- Open or Short Circuit LED Protection
- 3 Year Warranty

Specification

Input

Input Voltage Input Filter Input Surge

- 7-30 VDC
- Capacitor

· See tables

• 40 VDC for 0.5 s

Output

Output Voltage

 See tables (Vin must be at least 2 V greater than Vout)

Output Current

Output Current Trim • 25-100% **Output Current** • ±10

Accuracy

Ripple & Noise

450 mV pk-pk max,

Temperature Coefficient

Remote On/Off

- measured with 20 MHz bandwidth Short Circuit Protection • Current is limited to the rated output

 - ±0.05%/°C max
 - On = 0.3-1.25 V or open circuit Off = ≤ 0.15 V (applied to control pin) Quiescent input current is 25 µA max,

Remote On/Off Signal • 1 mA max Current

• 25% to 100%

• 1 kHz max

• 200 ns min

• 200 ns min • 1.25 V max

Dimming

PWM

Output Current Range Operating Frequency

On Time

Off Time Amplitude

DC Voltage Control

Output Current Range • 25% to 100% **Control Input**

• 0.3 to 1.25 V max

Variable Resistor

Output Current Range • 25% to 100%

General

Efficiency

Switching Frequency

MTBF

· See tables

• 70-450 kHz variable

>1.6 MHrs to MIL-HDBK-217F at 25 °C,

Environmental

Operating Temperature • -40 °C to +70 °C

Storage Temperature

• -40 °C to +125 °C

Humidity

• Up to 95%, non-condensing

Thermal Impedance

• 40 °C/W

EMC

Emissions

• EN55022 class B conducted & radiated with external components - see application notes

ESD Immunity

Radiated Immunity

EFT/Burst Surge

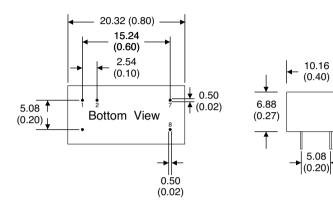
Conducted Immunity

- EN61000-4-2, level 2 Perf Criteria A
- EN61000-4-3, level 2 Perf Criteria A
- EN61000-4-4, level 2 Perf Criteria A
- EN61000-4-5, level 2 Perf Criteria A
- EN61000-4-6, level 2 Perf Criteria A

Models and Ratings

Output Power	Input Voltage Range	Output Voltage	Output Current	Efficiency	Model Number
14 W	7-30 V	2-28 V	500 mA	95%	LDU2030S500
17 W	7-30 V	2-28 V	600 mA	95%	LDU2030S600
20 W	7-30 V	2-28 V	700 mA	95%	LDU2030S700

10.16


(0.40)

5.08

3.05

(0.12)

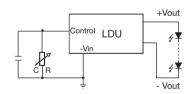
Mechanical Details

	Pin Connections				
1	-V Input	-DC supply			
2	Control	PWM/ON/OFF or not used			
7	-V Output	LED cathode connection			
8	+V Output	LED anode connection			
14	+V Input	+DC supply			

Note: Do not connect pin 1 (-Vin) to pin 7 (-Vout)

Notes

- 1. All dimensions are in inches (mm)
- 2. Weight: 0.006 lbs (2.6 g) approx.
- 3. Pin diameter: 0.02±0.002 (0.5±0.05)
- 4. Pin pitch tolerance: ±0.014 (±0.35)
- 5. Case tolerance: ±0.02 (±0.5)


Application Notes

Output Current Adjustment by Variable Resistor

By connecting a variable resistor between Control and GND, simple dimming can be achieved. Capacitor C is optional for HF noise rejection, recommended value is 0.22 µF.

Rated Max I x R The output current can be determined using the equation: (R + 200 k)

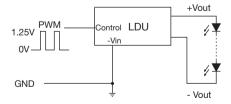

Where the value of R is between 0 and 2 $M\Omega$, the maximum adjustment range of output current is 25% to 90% (For Vin-Vout <20 VDC)

Output Current Adjustment by DC Voltage

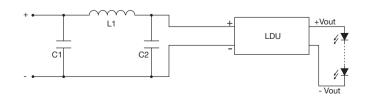
Control Voltage Range: 0.3 V to 1.25 VDC

1.25

A Control Voltage lower than 0.15 V will turn the output off


Shorting out the Control pin to GND will turn the output off.

Output Current Adjustment by PWM


A Pulse Width Modulated (PWM) signal with duty cycle DPWM can be applied to the control pin.

The output current can be determined using the equation : lout = Rated Max I x Dpwm

Dpwm = PWM duty cycle

Input Filter to meet Class B Conducted Emissions

C1	10 μF
C2	47 μF
L1	68 µH

