

Vishay Semiconductors

High Speed Optocoupler, 100 kBd, Low Input Current, High Gain

DESCRIPTION

High common mode transient immunity and very high current ratio together with 5300 V_{RMS} insulation are achieved by coupling an LED with an integrated high gain photon detector in an eight pin dual-in-line package. Separate pins for the photo diode and output stage enable TTL compatible saturation voltages with high speed operation.

Photodarlington operation is achieved by tying the V_{CC} and V_O terminals together. Access to the base terminal allows adjustment to the gain bandwidth.

The SFH6138 is ideal for TTL applications since the 300 % minimum current transfer ratio with an LED current of 1.6 mA enables operation with one unit load-in and one unit load-out with a 2.2 k Ω pull-up resistor.

The SFH6139 is best suited for low power logic applications involving CMOS and low power TTL. A 400 % current transfer ratio with only 0.5 mA of LED current is guaranteed from 0 $^{\circ}$ C to 70 $^{\circ}$ C.

FEATURES

- High current transfer ratio, 800 %
- Low input current requirement, 0.5 mA
- High output current, 60 mA
- Isolation test voltage, 5300 V_{RMS}
- TTL compatible output, V_{OL} = 0.1 V
- High common mode rejection, 500 V/µs
- DC to 0.1 megabit/s operation
- · Adjustable bandwidth access to base
- · Standard molded DIP plastic package
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- Logic ground isolation-TTL/TTL, TTL/CMOS, CMOS/CMOS, CMOS/TTL
- EIA RS 232 C line receiver
- · Low input current line receiver-long lines, party lines
- Telephone ring detector
- 117 V_{AC} line voltage status indication-low input power dissipation
- Low power systems-ground isolation

AGENCY APPROVALS

- UL1577, file no. E52744 system code H or J, double protection
- DIN EN 60747-5-5 (VDE 0884) available with option 1

ORDERING INFORMATION		
S F H 6 1 3 PART NUMBER	# - X 0 # # PACKAGE OPTION	TAPE AND REEL Option 7 Option 7
AGENCY CERTIFIED/PACKAGE	CTR	(%)
UL	≥ 300	≥ 500
DIP-8	SFH6138	SFH6139
DIP-8, option 6	SFH6138-X006	SFH6139-X006
VDE, UL	≥ 300	≥ 500
SMD-8, option 7	SFH6138-X017T ⁽¹⁾	SFH6139-X017T ⁽¹⁾

Note

(1) Also available in tubes; do not add T to end

SFH6138, SFH6139

Vishay Semiconductors High Speed Optocoupler, 100 kBd, Low Input Current, High Gain

PARAMETER	IGS (T _{amb} = 25 °C, unless of TEST CONDITION	PART	SYMBOL	VALUE	UNIT
	TEST CONDITION	PARI	STWIBUL	VALUE	UNII
INPUT					
Reverse voltage				5	V
Average current			I _{F(AVG)}	20	mA
Peak current	50 % duty cycle - 1 ms pulse width			40	mA
Peak transient current	t ≤ 1 µs, 300 pps			1	Α
OUTPUT					
Cupply and cutput valtage	V (nin 9 5) V (nin 6 5)	SFH6138	V _S , V _O	- 0.5 to 7	V
Supply and output voltage	V _{CC} (pin 8-5), V _O (pin 6-5)	SFH6139	V _S , V _O	- 0.5 to 18	V
Emitter base reverse voltage (pin 5 to 7)			V_{EBO}	0.5	V
Output current IO (pin 6)			I _O	60	mA
Derate linearly above 25 °C, free air temperature				0.7	mA/°C
Input power dissipation			P _{diss IN}	35	mW
Derate linearly above 50 °C, free air temperature				0.7	mW/°C
Output power dissipation			P _{diss OUT}	100	mW
Derate linearly above 25 °C, free air temperature				0.2	mA/°C
COUPLER					
Isolation test voltage	t = 1 s		V_{ISO}	5300	V_{RMS}
la clation vaciations a	V _{IO} = 500 V, T _{amb} = 100 °C		R _{IO}	≥ 10 ¹¹	Ω
Isolation resistance	V _{IO} = 500 V, T _{amb} = 25 °C		R _{IO}	≥ 10 ¹²	Ω
Storage temperature range			T _{stg}	- 55 to + 125	°C
Ambient temperature range			T _{amb}	- 55 to + 100	°C
Lead soldering temperature (1)	t = 10 s		T _{sld}	260	°C

Notes

⁽¹⁾ Refer to wave profile for soldering conditions for through hole devices.

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT								
Forward voltage	I _F = 16 mA		V_{F}		1.4	1.7	V	
Reverse breakdown voltage	I _R = 10 μA		BV_R	5			V	
Temperature coefficient of forward voltage	I _F = 1.6 mA				- 1.8		mV/°C	
ОUТРUТ								
Logic low output voltage (1)	$I_F = 16 \text{ mA}, I_O = 4.8 \text{ mA}, V_{CC} = 4.5 \text{ V}$	SFH6138	V _{OL}		0.1	0.4	V	
Logic low output voltage ***	$I_F = 16 \text{ mA}, I_O = 8 \text{ mA}, V_{CC} = 4.5 \text{ V}$	SFH6139	V _{OL}		0.1	0.4	V	
Logic low output voltage	$I_F = 5 \text{ mA}, I_O = 15 \text{ mA}, V_{CC} = 4.5 \text{ V}$	SFH6139	V _{OL}		0.15	0.4	V	
Logic low output voltage	$I_F = 12 \text{ mA}, I_O = 24 \text{ mA}, V_{CC} = 4.5 \text{ V}$	SFH6139	V _{OL}		0.25	0.4	V	
Logic high output ourrent (1)	$I_F = 0 \text{ mA}, V_O = V_{CC} = 7 \text{ V}$	SFH6138	I _{OH}		0.1	250	μA	
Logic high output current (1)	$I_F = 0 \text{ mA}, V_O = V_{CC} = 18 \text{ V}$	SFH6139	I _{OH}		0.05	100	μA	
Logic low supply current (1)	$I_F = 1.6 \text{ mA}, V_O = \text{open}, V_{CC} = 18 \text{ V}$		I _{CCL}		0.2	1.5	mA	
Logic high supply current	$I_F = 0$ mA, $V_O = open$, $V_{CC} = 18$ V		I _{CCH}		0.001	10	μA	

[•] Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

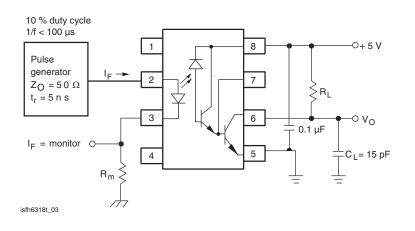
High Speed Optocoupler, 100 kBd, Vishay Semiconductors Low Input Current, High Gain

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER TEST CONDITION PART SYMBOL MIN. TYP. MAX. UNIT							
COUPLER							
Input capacitance	$f = 1 \text{ MHz}, V_F = 0$		C _{IN}		25		pF
Capacitance (input to output) (2)	f = 1 MHz		Co		0.6		pF

Notes

- Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.
- (1) Pin 7 open.
- (2) Device considered a two-terminal device: pins 1, 2, 3 and 4 shorted together and pins 5, 6, 7, and 8 shorted together.

CURRENT TRANSFER RATIO							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Current transfer ratio (1)	$I_F = 1.6 \text{ mA}, V_O = 0.4 \text{ V},$	SFH6138	CTR	300	1600		%
Current transfer ratio (*)	$V_{CC} = 4.5 \text{ V}$	SFH6139	CTR	400	1600		%
Current transfer ratio	$I_F = 1.6 \text{ mA}, V_O = 0.4 \text{ V}, V_{CC} = 4.5 \text{ V}$	SFH6139	CTR	500	2000		%


Note

 $^{(1)}$ DC current transfer ratio is defined as the ratio of output collector current, I_0 , to the forward LED input current, I_F times 100 %. Pin 7 open.

SWITCHING CHARACTERISTICS							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
	I_F = 1.6 mA, R_L = 2.2 kΩ	SFH6138	t _{PHL}		2	10	μs
Propagation delay time to logic low at output	$I_F = 0.5 \text{ mA}, R_L = 4.7 \text{ k}\Omega$	SFH6139	t _{PHL}		6	25	μs
low at output	$I_F = 12 \text{ mA}, R_L = 270 \Omega$	SFH6139	t _{PHL}		0.6	1	μs
	I_F = 1.6 mA, R_L = 2.2 kΩ	SFH6138	t _{PLH}		4	35	μs
Propagation delay time to logic high at output ⁽¹⁾	$I_F = 0.5 \text{ mA}, R_L = 4.7 \text{ k}\Omega$	SFH6139	t _{PLH}		5	60	μs
Tiight at output	$I_F = 12 \text{ mA}, R_L = 270 \Omega$	SFH6139	t _{PLH}		1	7	μs

Note

 $^{(1)}$ Pin 7 open. Using a resistor between pin 5 and 7 will decrease gain and delay time.

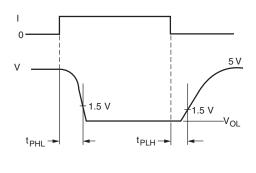


Fig. 1 - Switching Test Circuit

SFH6138, SFH6139

Vishay Semiconductors High Speed Optocoupler, 100 kBd, Low Input Current, High Gain

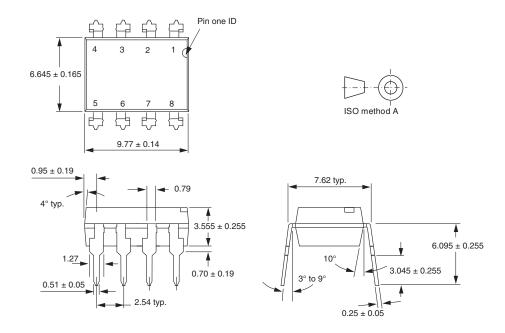
COMMON MODE TRANSIENT IMMUNITY								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Common mode transient immunity at logic high level output (1)	$\begin{split} I_F &= 0 \text{ mA, } R_L = 2.2 \text{ k}\Omega, \\ R_{CC} &= 0, V_{CM} = 10 \text{ V}_{P\text{-}P} \end{split}$	CM _H		500		V/µs		
Common mode transient immunity at logic low level output (1)	$\begin{split} I_F = 16 \text{ mA}, \ R_L = 2.2 \text{ k}\Omega, \\ R_{CC} = 0, \ V_{CM} = 10 \ V_{P\text{-}P} \end{split}$	CM _H		- 500		V/µs		

Note

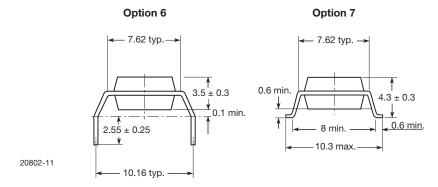
In applications where dv/dt may exceed 50 000 V/µs (such as state discharge a series resistor, R_{CC} should be included to protect I_C from destructively high surge currents. The recommended value is $R_{CC} \cong [IV/0.15 \ I_F(mA)] \ k\Omega$

SAFETY AND INSULATION	ON RATINGS					
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Climatic classification (according to IEC 68 part 1)				55/100/21		
Comparative tracking index		CTI	175		399	
V _{IOTM}			8000			V
V _{IORM}			890			V
P _{SO}					500	mW
I _{SI}					300	mA
T _{SI}					175	°C
Creepage distance	Standard DIP-8		7			mm
Clearance distance	Standard DIP-8		7			mm
Creepage distance	400 mil DIP-8		8			mm
Clearance distance	400 mil DIP-8		8			mm

Note


• As per IEC 60747-5-5, §7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.

⁽¹⁾ Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse, V_{CM} , to assure that the output will remain in a logic high state (i.e. $V_O > 2$ V) common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e. $V_O < 0.8$ V).



High Speed Optocoupler, 100 kBd, Vishay Semiconductors Low Input Current, High Gain

PACKAGE DIMENSIONS in millimeters

i178006

PACKAGE MARKING

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.