

Vishay Siliconix

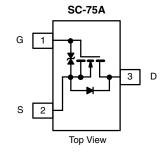
N-Channel 20 V (D-S) MOSFET

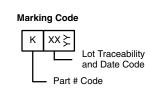
PRODUCT SUMMARY					
V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$	I _D (A)	Q _g (Typ.)		
20	0.396 at V _{GS} = 4.5 V	0.5			
	0.456 at $V_{GS} = 2.5 \text{ V}$	0.2	0.75		
	0.546 at V _{GS} = 1.8 V	0.2	0.75		
	1.100 at V _{GS} = 1.5 V	0.05			

FEATURES

TrenchFET® Power MOSFET: 1.2 V Rated

Gate-Source ESD Protected: 1000 V


Material categorization: For definitions of compliance please see www.vishav.com/doc?99912



HALOGEN FREE

APPLICATIONS

- Load/Power Switching for Portable Devices
- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories
- **Battery Operated Systems**
- **Power Supply Converter Circuits**

Ordering Information: Si1012CR-T1-GE3 (Lead (Pb)-free and Halogen-free)

ABSOLUTE MAXIMUM RATINGS	S (T _A = 25 °C, un	ess otherwise n	oted)	
Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V _{DS}	20	V
Gate-Source Voltage		V_{GS}	± 8	V
Continuous Drain Current (T _J = 150 °C) ^a	T _A = 25 °C	1-	0.63 ^{a, b}	
	T _A = 70 °C	I _D	0.5 ^{a, b}	A
Pulsed Drain Current (t = 300 μs)		I _{DM}	2	
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	0.2 ^{a, b}	A
Mariana Barra Birainatian	T _A = 25 °C	D	0.24 ^{a, b}	W
Maximum Power Dissipation ^a	T _A = 70 °C	P _D —	0.15 ^{a, b}	VV
Operating Junction and Storage Temperature Ra	T _J , T _{stq}	- 55 to 150	°C	

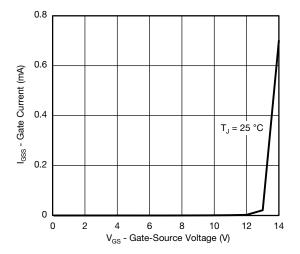
THERMAL RESISTANCE RATINGS					
Parameter	Symbol	Typical	Maximum	Unit	
Mariana Indiana An Analisa da	t ≤ 5 s	R_{thJA}	440	530	°C/W
Maximum Junction-to-Ambient ^D	Steady State		540	650	C/VV

a. Surface mounted on 1" x 1" FR4 board.

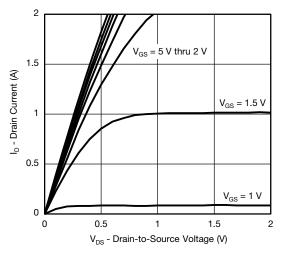
b. t = 5 s.

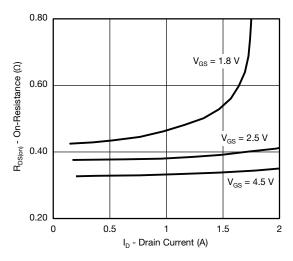
Vishay Siliconix

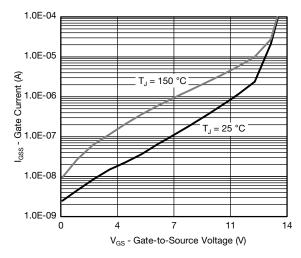
SPECIFICATIONS (T _J = 25 °C			NA*	T	NA c	11 14	
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static	.,		1	l	l	I	
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A}$	20			V	
V _{DS} Temperature Coefficient	ΔV _{DS} /T _J	I _D = 250 μA		17		mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	GS(th) ^{/T} J		- 1.8		, 0	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.4		1	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			± 30		
	433	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 4.5 \text{ V}$			± 1	μΑ	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 20 V, V _{GS} = 0 V			1	μΛ	
Zero date voltage Brain Garrent	טיטי	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 85 ^{\circ}\text{C}$			10	1	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	2			Α	
		$V_{GS} = 4.5 \text{ V}, I_D = 0.6 \text{ A}$		0.330	0.396		
Dunin Course On State Besistance	Book)	$V_{GS} = 2.5 \text{ V}, I_D = 0.3 \text{ A}$		0.380	0.456		
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 1.8 \text{ V}, I_D = 0.3 \text{ A}$		0.420	0.546	Ω	
		$V_{GS} = 1.5 \text{ V}, I_D = 0.05 \text{ A}$		0.720	1.100		
Forward Transconductance	9 _{fs}	V _{DS} = 10 V, I _D = 0.5 A		7.5		S	
Dynamic ^b						•	
Input Capacitance	C _{iss}			43		pF	
Output Capacitance	C _{oss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		14			
Reverse Transfer Capacitance	C _{rss}			8			
Total Cata Chausa	Q _g	$V_{DS} = 10 \text{ V}, V_{GS} = 8 \text{ V}, I_D = 0.6 \text{ A}$		1.3	2		
Total Gate Charge				0.75	1.2	nC	
Gate-Source Charge	Q_{gs}	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 0.6 \text{ A}$		0.15			
Gate-Drain Charge	Q _{gd}			0.13			
Gate Resistance	R_{g}	f = 1 MHz	2.4	12.2	24.4	Ω	
Turn-On Delay Time	t _{d(on)}			11	20		
Rise Time	t _r	$V_{DD} = 10 \text{ V, R}_{L} = 20 \Omega$		16	24		
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 0.5 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_q = 1 \Omega$		26	39	ns	
Fall Time	t _f	, and the second		11	20		
Drain-Source Body Diode Characterist	ics						
Pulse Diode Forward Current ^a	I _{SM}				2	Α	
Body Diode Voltage	V _{SD}	I _S = 0.5 A		0.8	1.2	V	
Body Diode Reverse Recovery Time	t _{rr}	_		10	15	ns	
Body Diode Reverse Recovery Charge		Q_{rr} $I_{E} = 0.5 \text{ A, dl/dt} = 100 \text{ A/µs}$		2	4	nC	
Reverse Recovery Fall Time	t _a			5		†	
<u> </u>	u u	1		1		ns	

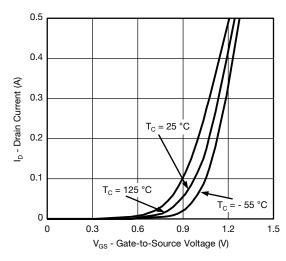

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

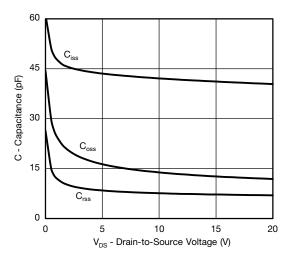
a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.


b. Guaranteed by design, not subject to production testing.

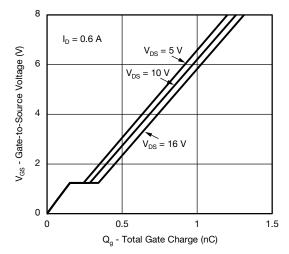

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

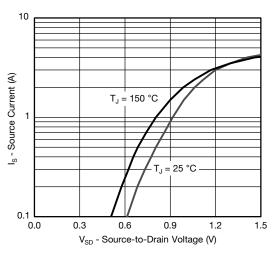

Gate Current vs. Gate-Source Voltage


Output Characteristics

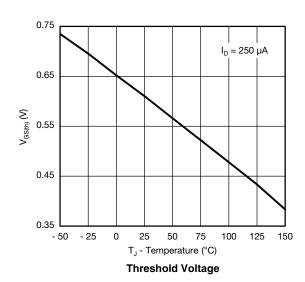

On-Resistance vs. Drain Current

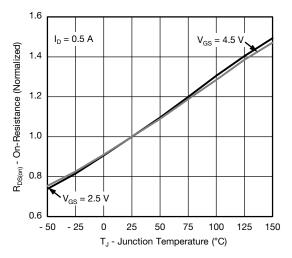
Gate Current vs. Gate-Source Voltage


Transfer Characteristics

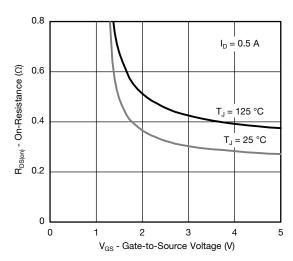

Capacitance

Vishay Siliconix

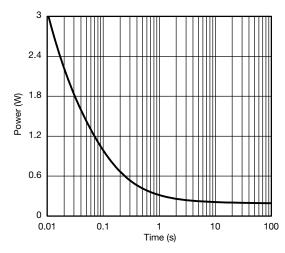

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



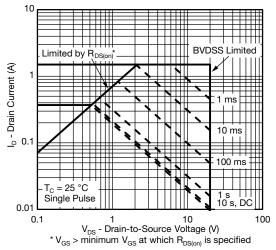
Gate Charge

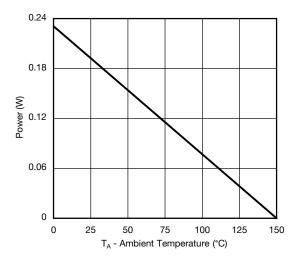


Soure-Drain Diode Forward Voltage

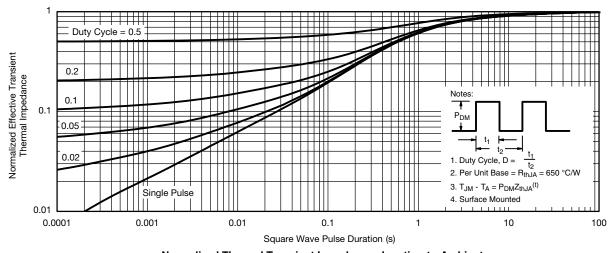


On-Resistance vs. Junction Temperature


On-Resistance vs. Gate-to-Source Voltage

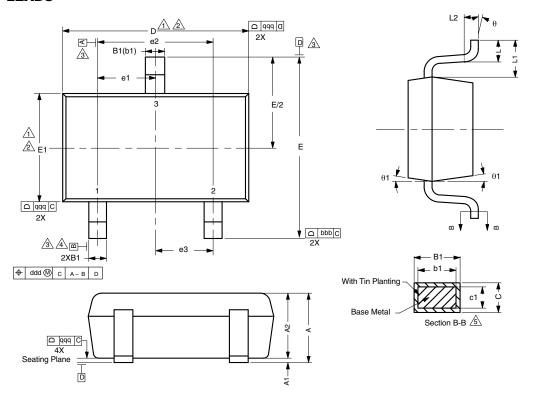

Single Pulse Power, Junction-to-Ambient

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



Power Derating, Junction-to-Ambient

^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.



Normalized Thermal Transient Impedance, Junction-to-Ambient

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67519.

SC-75A: 3-LEADS

Notes

Dimensions in millimeters will govern.

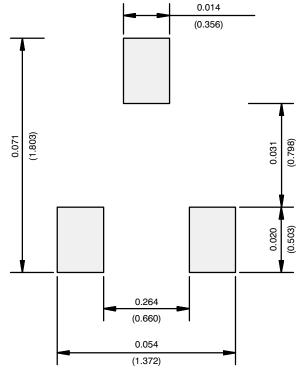
1. Dimension D does not include mold flash, protrusions or gate burrs. Mold flash protrusions or gate burrs shall not exceed 0.10 mm per end. Dimension E1 does not include Interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.10 mm per side.

2\Dimensions D and E1 are determined at the outmost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interelead flash, but including any mismatch between the top and bottom of the plastic body.

2\Datums A, B and D to be determined 0.10 mm from the lead tip.

4. Terminal positions are shown for reference only.

5. These dimensions apply to the flat section of the lead between 0.08 mm and 0.15 mm from the lead tip.


DIMENSIONS	TOLERANCES
aaa	0.10
bbb	0.10
ccc	0.10
ddd	0.10

DIM.	MIN.	NOM.	MAX.	NOTE		
Α	-	-	0.80			
A ₁	0.00	-	0.10			
A ₂	0.65	0.70	0.80			
B ₁	0.19	-	0.24	5		
b ₁	0.17	-	0.21			
С	0.13	-	0.15	5		
C ₁	0.10	-	0.12	5		
D	1.48	1.575	1.68	1, 2		
Е	1.50	1.60	1.70			
E ₁	0.66	0.76	0.86	1, 2		
e ₁						
e_2						
e_3						
لــ	0.15	0.205	0.30			
L ₁						
L ₂						
θ	0°	-	8°			
θ_1	4°	-	10°			
ECN: E11-2210-Rev. D, 08-Aug-11						

DWG: 5868

RECOMMENDED MINIMUM PADS FOR SC-75A: 3-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.