

www.vishay.com

Vishay Semiconductors

Dual Photovoltaic MOSFET Driver Solid-State Relay

DESCRIPTION

The VO1263AB and VO1263AAC photovoltaic MOSFET driver consists of two LEDs optically coupled to two photodiode arrays. The photodiode array provides a floating source with adequate voltage and current to drive high-power MOSFET transistors. Optical coupling provides a high I/O isolation voltage. In order to turn the MOSFET off, an external resistance (gate-to-source) is required for gate discharge.

FEATURES

- High open circuit voltage, up to 14.6 V typical
- High short circuit current, up to 42 µA typical
- Isolation test voltage 5300 V_{RMS}
- · Logic compatible input
- High reliability

Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

- APPLICATIONSHigh-side driver
- Solid-state relays
- Floating power supply
- Power control
- Data acquisition
- ATE
- Isolated switching

Note

• See "solid-state relays" (application note 56)

AGENCY APPROVALS

- UL1577 (pending)
- DIN EN (pending)
- FIMKO (pending)

ORDERING INFORMATION				
V O 1 2 6 3 # PART NUMBER ELECTR. VARIATION	# # T R DIP SMD PACKAGE TAPE AND REEL 7.62 mm			
PACKAGE	UL, BSI, VDE, FIMKO			
SMD-8	VO1263AAC			
SMD-8, tape and reel	VO1263AACTR			
DIP-8	VO1263AB			

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
SSR						
LED input ratings continuous forward current		I _F	50	mA		
LED input ratings reverse voltage	I _R ≤ 10 μA	V_R	5.0	V		
Photodiode array reverse voltage	I _R ≤ 2.0 μA	V _R	100	V		
Ambient operating temperature range		T _{amb}	- 40 to + 100	°C		
Storage temperature range		T _{stg}	- 40 to + 150	°C		
Pin soldering temperature (1)	t = 7.0 s max.	T _{sld}	270	°C		
Input to output isolation test voltage	t = 1 s	V _{ISO}	5300	V_{RMS}		

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
 implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
 maximum ratings for extended periods of the time can adversely affect reliability.
- (1) Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through hole devices (DIP).

VO1263AAC, VO1263AACTR, VO1263AB

Vishay Semiconductors

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
LED forward voltage	I _F = 10 mA	V _F	1.2	1.3	1.6	V
Detector reverse voltage	$I_{R} = 2.0 \mu A$	V _{R(PDA)}		350		V
	I _F = 5.0 mA	V _{OC}		13.73		V
	I _F = 10 mA	V _{OC}	10.3	14.27	16.5	V
Open circuit voltage (pins 5, 6 or 7, 8)	I _F = 15 mA	V _{oc}		14.50		V
	I _F = 20 mA	V _{OC}		14.70		V
	I _F = 30 mA	V _{OC}		14.94		V
Short circuit current (pins 5, 6 or 7, 8)	I _F = 5.0 mA	I _{SC}	3.0	4.47		μΑ
	I _F = 10 mA	I _{SC}	7.5	9.8		μΑ
	I _F = 15 mA	I _{SC}	11	15.33		μΑ
	I _F = 20 mA	I _{SC}	15	20.97		μΑ
	I _F = 30 mA	I _{SC}	21	32.4		μΑ

Note

• Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Turn-on time	$I_F = 5 \text{ mA}, I_L = 50 \text{ mA}$	t _{on}				ms
Turn-off time	$I_F = 5 \text{ mA}, I_L = 50 \text{ mA}$	t _{off}				ms

SAFETY AND INSULATION RATINGS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Climatic classification (according to IEC 68 part 1)				40/100/21		
Comparative tracking index		CTI	175		399	
Peak transient overvoltage		V_{IOTM}	8000			V
Recurring peak voltage		V _{IORM}	630			V
Package safety power		P _{SO}			500	mW
Package safety current		I _{SI}			300	mA
Package safety temperature		T _{SI}			175	°C
Creepage distance			7			mm
Clearance distance			7			mm

FUNCTIONAL DESCRIPTION

Figure 1 outlines the IV characteristics of the illuminated photodiode array (PDA). For operation at voltages below V_{OC} , the PDA acts as a nearly constant current source. The actual region of operation depends upon the load.

The amount of current applied to the LED (pins 1 and 2 or 3 and 4) determines the amount of light produced for the PDA. For high temperature operation, more LED current may be required.

Vishay Semiconductors

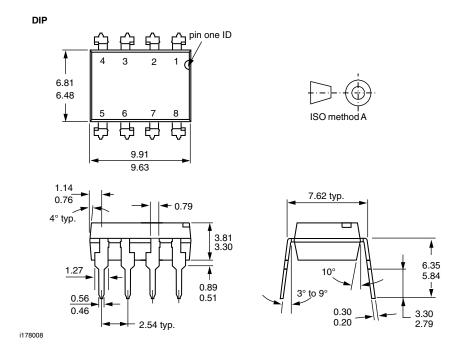
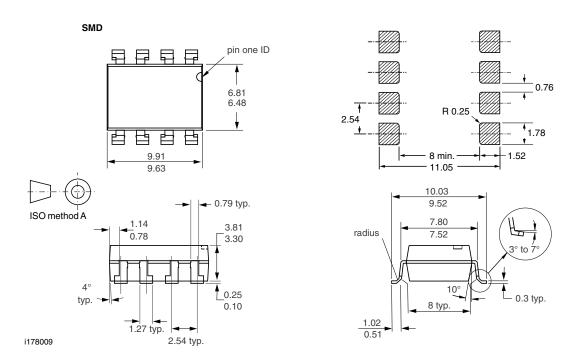



Fig. 1 - Typical Dual Form A Solid-State Relay Application


PACKAGE DIMENSIONS in millimeters

Vishay Semiconductors

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.