

General Description

The MAX5590-MAX5595 octal, 12/10/8-bit, voltage-output digital-to-analog converters (DACs) offer buffered outputs and a 3µs maximum settling time at the 12-bit level. The DACs operate from a +2.7V to +5.25V analog supply and a separate +1.8V to +5.25V digital supply. The 20MHz 3-wire serial interface is compatible with SPI™, QSPI™, MICROWIRE™, and digital signal processor (DSP) protocol applications. Multiple devices can share a common serial interface in direct-access or daisy-chained configuration. The MAX5590-MAX5595 provide two multifunction, user-programmable, digital I/O ports. The externally selectable power-up states of the DAC outputs are either zero scale, midscale, or full scale. Software-selectable FAST and SLOW settling modes decrease settling time in FAST mode, or reduce supply current in SLOW mode.

The MAX5590/MAX5591 are 12-bit DACs, the MAX5592/ MAX5593 are 10-bit DACs, and the MAX5594/ MAX5595 are 8-bit DACs. The MAX5590/MAX5592/ MAX5594 provide unity-gain-configured output buffers, while the MAX5591/MAX5593/MAX5595 provide forcesense-configured output buffers. The MAX5590-MAX5595 are specified over the extended -40°C to +85°C temperature range, and are available in spacesaving 24-pin and 28-pin TSSOP packages.

Features

- ♦ Octal, 12/10/8-Bit Serial DACs in TSSOP Packages
- ♦ 3µs (max) 12-Bit Settling Time to 1/2 LSB
- **♦ Integral Nonlinearity:**
 - 1 LSB (max) MAX5590/MAX5591 A-Grade (12-Bit) 1 LSB (max) MAX5592/MAX5593 (10-Bit) 1/2 LSB (max) MAX5594/MAX5595 (8-Bit)
- ♦ Guaranteed Monotonic, ±1 LSB (max) DNL
- ♦ Two User-Programmable Digital I/O Ports
- ♦ Single +2.7V to +5.25V Analog Supply
- ♦ +1.8V to AVDD Digital Supply
- ♦ 20MHz, 3-Wire, SPI-/QSPI-/MICROWIRE-/DSP-**Compatible Serial Interface**
- ♦ Glitch-Free Outputs Power Up to Zero Scale, Midscale, or Full Scale Controlled by PU Pin
- ♦ Unity-Gain or Force-Sense-Configured Output **Buffers**

Applications

Portable Instrumentation

Automatic Test Equipment (ATE)

Digital Offset and Gain Adjustment

Automatic Tuning

Programmable Voltage and Current Sources

Programmable Attenuators

Industrial Process Controls

Motion Control

Microprocessor (µP)-Controlled Systems

Power Amplifier Control

Fast Parallel-DAC to Serial-DAC Upgrades

Ordering Information

TEMP RANGE	PIN-PACKAGE
-40°C to +85°C	24 TSSOP
-40°C to +85°C	24 TSSOP
-40°C to +85°C	28 TSSOP
-40°C to +85°C	28 TSSOP
-40°C to +85°C	24 TSSOP
-40°C to +85°C	28 TSSOP
-40°C to +85°C	24 TSSOP
-40°C to +85°C	28 TSSOP
	-40°C to +85°C

^{*}Future product—contact factory for availability. Specifications are preliminary.

Selector Guide and Pin Configurations appear at end of data sheet.

SPI/QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

ABSOLUTE MAXIMUM RATINGS

AV _{DD} to DV _{DD} ±6V
AGND to DGND±0.3V
AV _{DD} to AGND, DGND0.3V to +6V
DV _{DD} to AGND, DGND0.3V to +6V
FB_, OUT_,
REF to AGND0.3V to the lower of (AVDD + 0.3V) or +6V
SCLK, DIN, $\overline{\text{CS}}$, PU,
$\overline{\text{DSP}}$ to DGND0.3V to the lower of (DV _{DD} + 0.3V) or +6V
UPIO1, UPIO2
to DGND0.3V to the lower of (DV _{DD} + 0.3V) or +6V
FB_, OUT_, REF to AGND0.3V to the lower of (AVDD + 0.3V) or +6V SCLK, DIN, $\overline{\text{CS}}$, PU, $\overline{\text{DSP}}$ to DGND0.3V to the lower of (DVDD + 0.3V) or +6V UPIO1, UPIO2

Maximum Current into Any Pin	±50mA
Continuous Power Dissipation (T _A = +70°C)	
24-Pin TSSOP (derate 13.9mW/°C above +70°C	c)1111mW
28-Pin TSSOP (derate 14mW/°C above +70°C)	1117mW
Operating Temperature Range4	0°C to +85°C
Storage Temperature Range65	6°C to +150°C
Maximum Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(AV_{DD}=2.7V\ to\ 5.25V,\ DV_{DD}=1.8V\ to\ AV_{DD},\ V_{AGND}=0V,\ V_{DGND}=0V,\ V_{REF}=2.5V\ (for\ AV_{DD}=2.7V\ to\ 5.25V),\ V_{REF}=4.096V\ (for\ AV_{DD}=4.5V\ to\ 5.25V),\ R_L=10k\Omega,\ C_L=100pF,\ T_A=T_{MIN}\ to\ T_{MAX},\ unless otherwise\ noted.$ Typical values are at $T_A=+25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS			TYP	MAX	UNITS
STATIC ACCURACY							
		MAX5590/MAX559	1	12			
Resolution	N	MAX5592/MAX559	3	10			Bits
		MAX5594/MAX559	5	8			
		V _{REF} = 2.5V at	MAX5590A/MAX5591A (12-bit)			±1	
Integral Manlingarity	INL	$AV_{DD} = 2.7V$ and	MAX5590B/MAX5591B (12-bit)		±2	±4	LCD
Integral Nonlinearity	IINL	$V_{REF} = 4.096V \text{ at}$ $AV_{DD} = 5.25V$	MAX5592/MAX5593 (10-bit)		±0.5	±1	- LSB
		(Note 2)	MAX5594/MAX5595 (8-bit)		±0.125	±0.5	
Differential Nonlinearity	DNL	Guaranteed monot	onic (Note 2)			±1	LSB
		MAX5590A/MAX559	91A (12-bit), decimal code = 40			±5	
Offset Error	Vos	MAX5590B/MAX559	91B (12-bit), decimal code = 40		±5	±25	mV
Oliset Ellor	VOS	MAX5592/MAX559		±5	±25	IIIV	
		MAX5594/MAX5595 (8-bit), decimal code = 3			±5	±25	
Offset-Error Drift					5		ppm of FS/°C
			MAX5590A/MAX5591A (12-bit)			±4	
Coin Error	0.5	Full cools output	MAX5590B/MAX5590B (12-bit)		±20	±40	LSB
Gain Error	GE	GE Full-scale output	MAX5592/MAX5593 (10-bit)		±5	±10	
			MAX5594/MAX5595 (8-bit)		±2	±3	
Gain-Error Drift					1		ppm of FS/°C

ELECTRICAL CHARACTERISTICS (continued)

 $(AV_{DD}=2.7V\ to\ 5.25V,\ DV_{DD}=1.8V\ to\ AV_{DD},\ V_{AGND}=0V,\ V_{DGND}=0V,\ V_{REF}=2.5V\ (for\ AV_{DD}=2.7V\ to\ 5.25V),\ V_{REF}=4.096V\ (for\ AV_{DD}=4.5V\ to\ 5.25V),\ R_L=10k\Omega,\ C_L=100pF,\ T_A=T_{MIN}\ to\ T_{MAX},\ unless otherwise\ noted.$ Typical values are at $T_A=+25^{\circ}C.$) (Note 1)

PARAMETER	SYMBOL	CONI	CONDITIONS		TYP	MAX	UNITS	
Power-Supply Rejection Ratio	PSRR	Full-scale output, AVDD =	Full-scale output, AV _{DD} = 2.7V to 5.25V		200		μV/V	
REFERENCE INPUT								
Reference Input Range	V _{REF}			0.25		AV_{DD}	V	
Reference Input Resistance	R _{REF}	Normal operation (no coo	de dependence)	145	200		kΩ	
Reference Leakage Current		Shutdown mode			0.5	1	μΑ	
DAC OUTPUT CHARACT	TERISTICS							
		CLOW made full scale	Unity gain		85			
Outrot Vallage Naise		SLOW mode, full scale	Force sense		67			
Output Voltage Noise		[ACT full	Unity gain		140		μV _{RMS}	
		FAST mode, full scale	Force sense		110			
Output Voltage Range		Unity-gain output	<u>.</u>	0		AV _{DD}	V	
(Note 3)		Force-sense output		0		AV _{DD} / 2	V	
DC Output Impedance					38		Ω	
Ob + Oii+ O		AV _{DD} = 5V, OUT_ to AGN	ND, full scale, FAST mode		57		^	
Short-Circuit Current		AV _{DD} = 3V, OUT_ to AGND, full scale, FAST mode			45		mA	
Power-Up Time		From V _{DD} applied until in	terface is functional		30	60	μs	
Wake-Up Time		Coming out of shutdown,	outputs settled		40		μs	
Output OUT_ and FB_ Open-Circuit Leakage Current		Programmed in shutdowr outputs only	n mode, force-sense		0.01		μΑ	
DIGITAL OUTPUTS (UPI	O_)	1					I.	
Output High Voltage	Voн	ISOURCE = 2mA		DV _{DD} - 0.5			V	
Output Low Voltage	V _{OL}	I _{SINK} = 2mA				0.4	V	
DIGITAL INPUTS (SCLK								
		DV _{DD} ≥ 2.7V		2.4				
Input High Voltage	VIH	DV _{DD} < 2.7V		0.7 x DV _{DD}			V	
		DV _{DD} > 3.6V				0.8		
Input Low Voltage	VIL	2.7V ≤ DV _{DD} ≤ 3.6V				0.6	V	
-		DV _{DD} < 2.7V				0.2	1	
Input Leakage Current	I _{IN}				±0.1	±1	μΑ	
Input Capacitance	C _{IN}				10		рF	

ELECTRICAL CHARACTERISTICS (continued)

 $(AV_{DD}=2.7V\ to\ 5.25V,\ DV_{DD}=1.8V\ to\ AV_{DD},\ V_{AGND}=0V,\ V_{DGND}=0V,\ V_{REF}=2.5V\ (for\ AV_{DD}=2.7V\ to\ 5.25V),\ V_{REF}=4.096V\ (for\ AV_{DD}=4.5V\ to\ 5.25V),\ R_L=10k\Omega,\ C_L=100pF,\ T_A=T_{MIN}\ to\ T_{MAX},\ unless otherwise\ noted.$ Typical values are at $T_A=+25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL		MIN	TYP	MAX	UNITS	
PU INPUT							
Input High Voltage	V _{IH-PU}			DV _{DD} - 200mV			٧
Input Low Voltage	V _{IL-PU}					200	mV
Input Leakage Current	IIN-PU	PU still cor a tri-state t	nsidered unconnected when connected to bus			±200	nA
DYNAMIC PERFORMAN	ICE						
Voltage-Output Slew	SR	FAST mod	e		3.6		V/µs
Rate	OH	SLOW mod	de		1.6		ν/μδ
			MAX5590/MAX5591 from code 322 to code 4095 to 1/2 LSB		2	3	
		FAST mode	MAX5592/MAX5593 from code 10 to code 1023 to 1/2 LSB		1.5	3	
Voltage-Output Settling			MAX5594/MAX5595 from code 3 to code 255 to 1/2 LSB		1	2	
Time (Note 5)			MAX5590/MAX5591 from code 322 to code 4095 to 1/2 LSB		3	6	μs
		SLOW mode	MAX5592/MAX5593 from code 10 to code 1023 1/2 LSB		2.5	6	
			MAX5594/MAX5595 from code 3 to code 255 to 1/2 LSB		2	4	
FB_ Input Voltage				0		V _{REF} / 2	V
FB_ Input Current						0.1	μΑ
Reference -3dB		Unity gain			200		kHz
Bandwidth (Note 6)		Force sens	Force sense				KI IZ
Digital Feedthrough			D, code = zero scale, any digital input DVDD and DVDD to 0, f = 100kHz		0.1		nV-s
Digital-to-Analog Glitch Impulse		Major carry	y transition		2		nV-s
DAC-to-DAC Crosstalk		(Note 4)			15		nV-s

_____MIXIM

ELECTRICAL CHARACTERISTICS (continued)

 $(AV_{DD}=2.7V\ to\ 5.25V,\ DV_{DD}=1.8V\ to\ AV_{DD},\ V_{AGND}=0V,\ V_{DGND}=0V,\ V_{REF}=2.5V\ (for\ AV_{DD}=2.7V\ to\ 5.25V),\ V_{REF}=4.096V\ (for\ AV_{DD}=4.5V\ to\ 5.25V),\ R_L=10k\Omega,\ C_L=100pF,\ T_A=T_{MIN}\ to\ T_{MAX},\ unless otherwise\ noted.$ Typical values are at $T_A=+25^{\circ}C.$) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			TYP	MAX	UNITS
POWER REQUIREMENT	s						
Analog Supply Voltage Range	AV _{DD}			2.70		5.25	V
Digital Supply Voltage Range	DV _{DD}			1.8		AV_{DD}	V
		SLOW mode, all digital inputs at DGND or DV _{DD} , no load, $V_{REF} = 4.096V$ FAST mode, all digital inputs at DGND or DV _{DD} , no load, $V_{REF} = 4.096V$	Unity gain		1.5	3.2	
Operating Supply	I _{AVDD}		Force sense		2.4	4.8	A
Current	+ I _{DVDD}		Unity gain		2.5	8	mA
			Force sense		3.4	8	
Shutdown Supply Current	IAVDD(SHDN) + IDVDD(SHDN)	No clocks, all digital inputs at DGND or DV _{DD} , all DACs in shutdown mode			0.5	1	μА

- Note 1: For the force-sense versions, FB_ is connected to its respective OUT_. VOUT (max) = VREF / 2, unless otherwise noted.
- Note 2: Linearity guaranteed from decimal code 40 to code 4095 for the MAX5590B/MAX5591B (12-bit, B-grade), code 10 to code 1023 for the MAX5592/MAX5593 (10-bit), and code 3 to code 255 for the MAX5594/MAX5595 (8-bit).
- **Note 3:** Represents the functional range. The linearity is guaranteed at VREF = 2.5V (for AVDD from 2.7V to 5.25V), and VREF = 4.096V (for AVDD = 4.5V to 5.25V). See the *Typical Operating Characteristics* section for linearity at other voltages.
- Note 4: DC crosstalk is measured as follows: outputs of DACA–DACH are set to full scale and the output of DACH is measured. While keeping DACH unchanged, the outputs of DACA–DACG are transitioned to zero scale and the ΔVOUT of DACH is measured.
- Note 5: Guaranteed by design.
- Note 6: The reference -3dB bandwidth is measured with a 0.1VP-P sine wave on VRFF and with full-scale input code.

TIMING CHARACTERISTICS—DSP Mode Disabled (3V, 3.3V, 5V Logic) (Figure 1)

(DV_{DD} = 2.7V to 5.25V, V_{AGND} = 0V, V_{DGND} = 0V, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCLK Frequency	fsclk	2.7V < DV _{DD} < 5.25V			20	MHz
SCLK Pulse-Width High	tсн	(Note 7)	20			ns
SCLK Pulse-Width Low	tCL	(Note 7)	20			ns
CS Fall to SCLK Rise Setup Time	tcss		10			ns
SCLK Rise to CS Rise Hold Time	tcsh		5			ns
SCLK Rise to CS Fall Setup	tcso		10			ns
DIN to SCLK Rise Setup Time	tDS		12			ns
DIN to SCLK Rise Hold Time	tDH		5			ns
SCLK Rise to DOUTDC1 Valid Propagation Delay	t _{DO1}	C _L = 20pF, UPIO_ = DOUTDC1 mode			30	ns
SCLK Fall to DOUT_ Valid Propagation Delay	t _{DO2}	C _L = 20pF, UPIO_ = DOUTDC0 or DOUTRB mode			30	ns
CS Rise to SCLK Rise Hold Time	tCS1	MICROWIRE and SPI modes 0 and 3	10			ns
CS Pulse-Width High	tcsw		45			ns
UPIO_ TIMING CHARACTERISTIC	cs					
DOUT Tri-State Time when Exiting DOUTDC0, DOUTDC1, and UPIO Modes	tDOZ	C _L = 20pF, from end of write cycle to UPIO_ in high impedance			100	ns
DOUTRB Tri-State Time from $\overline{\text{CS}}$ Rise	tDRBZ	$C_L = 20$ pF, from rising edge of \overline{CS} to UPIO_ in high impedance			20	ns
DOUTRB Tri-State Enable Time from 8th SCLK Rise	^t ZEN	C _L = 20pF, from 8th rising edge of SCLK to UPIO_ driven out of tri-state	0			ns
LDAC Pulse-Width Low	t _{LDL}	Figure 5	20			ns
LDAC Effective Delay	tLDS	Figure 6	100			ns
CLR, MID, SET Pulse-Width Low	tcms	Figure 5	20			ns
GPO Output Settling Time	tgp	Figure 6			100	ns
GPO Output High-Impedance Time	tGPZ				100	ns

TIMING CHARACTERISTICS—DSP Mode Disabled (1.8V Logic) (Figure 1)

(DV_{DD} = 1.8V to 5.25V, V_{AGND} = 0V, V_{DGND} = 0V, T_{A} = T_{MIN} to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCLK Frequency	fsclk	1.8V < DV _{DD} < 5.25V			10	MHz
SCLK Pulse-Width High	tch	(Note 7)	40			ns
SCLK Pulse-Width Low	tCL	(Note 7)	40			ns
CS Fall to SCLK Rise Setup Time	tcss		20			ns
SCLK Rise to $\overline{\text{CS}}$ Rise Hold Time	tcsh		0			ns
SCLK Rise to CS Fall Setup	tCS0		10			ns
DIN to SCLK Rise Setup Time	t _{DS}		20			ns
DIN to SCLK Rise Hold Time	t _{DH}		5			ns
SCLK Rise to DOUTDC1 Valid Propagation Delay	t _{DO1}	C _L = 20pF, UPIO_ = DOUTDC1 mode			60	ns
SCLK Fall to DOUT_ Valid Propagation Delay	t _{DO2}	C _L = 20pF, UPIO_ = DOUTDC0 or DOUTRB mode			60	ns
CS Rise to SCLK Rise Hold Time	tCS1	MICROWIRE and SPI modes 0 and 3	20			ns
CS Pulse-Width High	tcsw		90			ns
UPIO_ TIMING CHARACTERISTIC	cs					
DOUT Tri-State Time when Exiting DOUTDC0, DOUTDC1, and UPIO Modes	tDOZ	C _L = 20pF, from end of write cycle to UPIO_ in high impedance			200	ns
DOUTRB Tri-State Time from CS Rise	t _{DRBZ}	$C_L = 20pF$, from rising edge of \overline{CS} to UPIO_ in high impedance			40	ns
DOUTRB Tri-State Enable Time from 8th SCLK Rise	^t ZEN	C _L = 20pF, from 8th rising edge of SCLK to UPIO_ driven out of tri-state	0			ns
LDAC Pulse-Width Low	t _{LDL}	Figure 5	40			ns
LDAC Effective Delay	t _{LDS}	Figure 6	200			ns
CLR, MID, SET Pulse-Width Low	tcms	Figure 5	40			ns
GPO Output Settling Time	tGP	Figure 6			200	ns
GPO Output High-Impedance Time	tgpz				200	ns

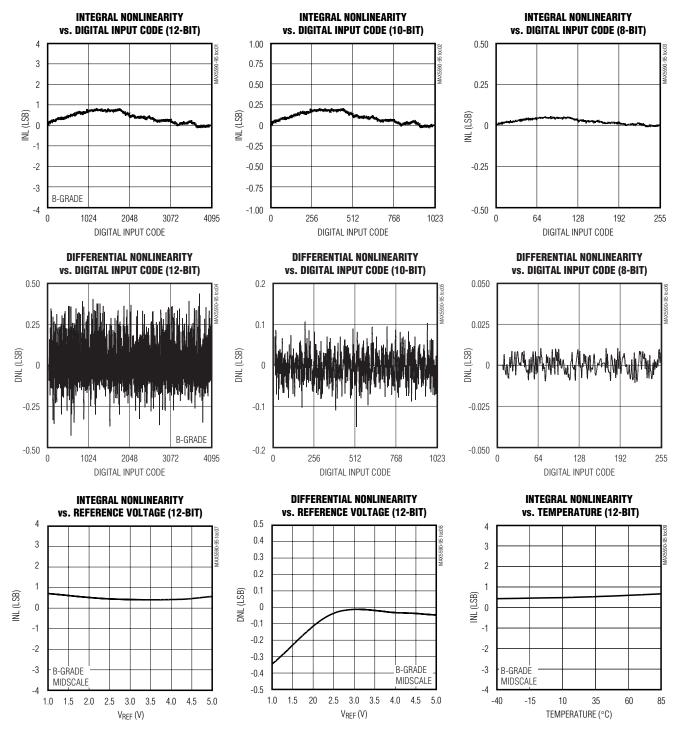
TIMING CHARACTERISTICS—DSP Mode Enabled (3V, 3.3V, 5V Logic) (Figure 2)

(DV_{DD} = 2.7V to 5.25V, V_{AGND} = 0V, V_{DGND} = 0V, T_{A} = T_{MIN} to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCLK Frequency	fsclk	2.7V < DV _{DD} < 5.25V			20	MHz
SCLK Pulse-Width High	tсн	(Note 7)	20			ns
SCLK Pulse-Width Low	tCL	(Note 7)	20			ns
CS Fall to SCLK Fall Setup Time	tcss		10			ns
DSP Fall to SCLK Fall Setup Time	toss		10			ns
SCLK Fall to CS Rise Hold Time	tcsh		5			ns
SCLK Fall to CS Fall Delay	tCS0		10			ns
SCLK Fall to DSP Fall Delay	t _{DS0}		10			ns
DIN to SCLK Fall Setup Time	tDS		12			ns
DIN to SCLK Fall Hold Time	tDH		5			ns
SCLK Rise to DOUT_ Valid Propagation Delay	t _{DO1}	C _L = 20pF, UPIO_ = DOUTDC1 or DOUTRB mode			30	ns
SCLK Fall to DOUT_ Valid Propagation Delay	t _{DO2}	C _L = 20pF, UPIO_ = DOUTDC0 mode			30	ns
CS Rise to SCLK Fall Hold Time	tcs1	MICROWIRE and SPI modes 0 and 3	10			ns
CS Pulse-Width High	tcsw		45			ns
DSP Pulse-Width High	tosw		20			ns
DSP Pulse-Width Low	tDSPWL	(Note 8)	20			ns
UPIO_ TIMING CHARACTERISTIC	CS					
DOUT Tri-State Time when Exiting DOUTDC0, DOUTDC1, and UPIO Modes	tDOZ	C _L = 20pF, from end of write cycle to UPIO_ in high impedance			100	ns
DOUTRB Tri-State Time from $\overline{\text{CS}}$ Rise	tDRBZ	$C_L = 20$ pF, from rising edge of \overline{CS} to UPIO_ in high impedance			20	ns
DOUTRB Tri-State Enable Time from 8th SCLK Fall	tzen	C _L = 20pF, from 8th falling edge of SCLK to UPIO_ driven out of tri-state	0			ns
LDAC Pulse-Width Low	t _{LDL}	Figure 5	20			ns
LDAC Effective Delay	t _{LDS}	Figure 6	100			ns
CLR, MID, SET Pulse-Width Low	tcms	Figure 5	20			ns
GPO Output Settling Time	tgp	Figure 6			100	ns
GPO Output High-Impedance Time	tGPZ				100	ns

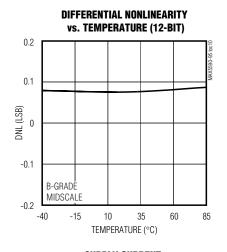
TIMING CHARACTERISTICS—DSP Mode Enabled (1.8V Logic) (Figure 2)

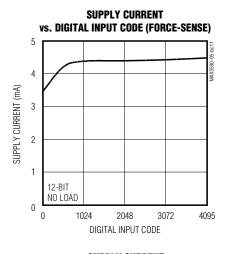
(DV_{DD} = 1.8V to 5.25V, V_{AGND} = 0V, V_{DGND} = 0V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.)

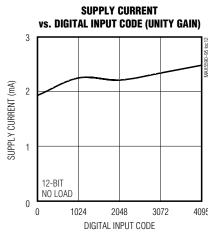

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCLK Frequency	fsclk	1.8V < DV _{DD} < 5.25V			10	MHz
SCLK Pulse-Width High	tсн	(Note 7)	40			ns
SCLK Pulse-Width Low	tCL	(Note 7)	40			ns
CS Fall to SCLK Fall Setup Time	tcss		20			ns
DSP Fall to SCLK Fall Setup Time	toss		20			ns
SCLK Fall to CS Rise Hold Time	tcsh		0			ns
SCLK Fall to CS Fall Delay	tcso		10			ns
SCLK Fall to DSP Fall Delay	t _{DS0}		15			ns
DIN to SCLK Fall Setup Time	tDS		20			ns
DIN to SCLK Fall Hold Time	t _{DH}		5			ns
SCLK Rise to DOUT_ Valid Propagation Delay	t _{DO1}	C _L = 20pF, UPIO_ = DOUTDC1 or DOUTRB mode			60	ns
SCLK Fall to DOUT_ Valid Propagation Delay	t _{DO2}	C _L = 20pF, UPIO_ = DOUTDC0 mode			60	ns
CS Rise to SCLK Fall Hold Time	t _{CS1}	MICROWIRE and SPI modes 0 and 3	20			ns
CS Pulse-Width High	tcsw		90			ns
DSP Pulse-Width High	tDSW		40			ns
DSP Pulse-Width Low	tDSPWL	(Note 8)	40			ns
UPIO_ TIMING CHARACTERISTIC	cs					
DOUT Tri-State Time when Exiting DOUTDC0, DOUTDC1, and UPIO Modes	tDOZ	C _L = 20pF, from end of write cycle to UPIO_ in high impedance			200	ns
DOUTRB Tri-State Time from $\overline{\text{CS}}$ Rise	tDRBZ	$C_L = 20$ pF, from rising edge of \overline{CS} to UPIO_ in high impedance			40	ns
DOUTRB Tri-State Enable Time from 8th SCLK Fall	tZEN	C_L = 20pF, from 8th falling edge of SCLK to UPIO_ driven out of tri-state	0			ns
LDAC Pulse-Width Low	t _{LDL}	Figure 5	40			ns
LDAC Effective Delay	tLDS	Figure 6	200	<u> </u>	·	ns
CLR, MID, SET Pulse-Width Low	tcms	Figure 5	40			ns
GPO Output Settling Time	tgp	Figure 6			200	ns
GPO Output High-Impedance Time	tGPZ				200	ns

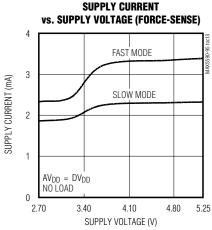
Note 7: In some daisy-chain modes, data is required to be clocked in on one clock edge and the shifted data clocked out on the following edge. In the case of a 1/2 clock-period delay, it is necessary to increase the minimum high/low clock times to 25ns (2.7V) or 50ns (1.8V).

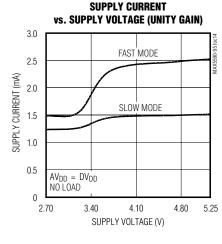
Note 8: The falling edge of \overline{DSP} starts a DSP-type bus cycle, provided that \overline{CS} is also active low to select the device. \overline{DSP} active low and \overline{CS} active low must overlap by a minimum of 10ns (2.7V) or 20ns (1.8V). \overline{CS} can be permanently low in this mode of operation.

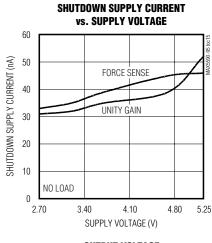

Typical Operating Characteristics

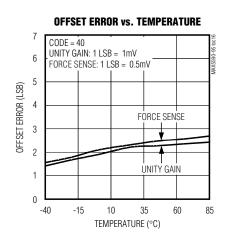

 $(AV_{DD} = DV_{DD} = 5V, V_{REF} = 4.096V, R_L = 10k\Omega, C_L = 100pF, speed mode = FAST, PU = unconnected, T_A = +25°C, unless otherwise noted.)$

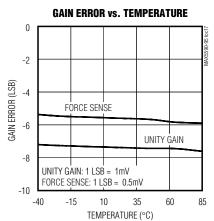


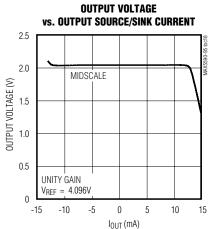

Typical Operating Characteristics (continued)

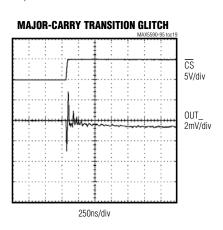

 $(AV_{DD} = DV_{DD} = 5V, V_{REF} = 4.096V, R_L = 10k\Omega, C_L = 100pF, speed mode = FAST, PU = unconnected, T_A = +25°C, unless otherwise noted.)$

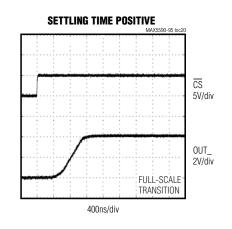


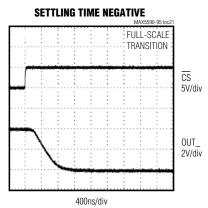


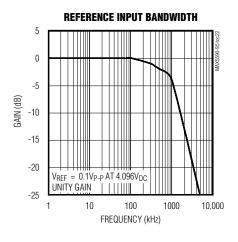


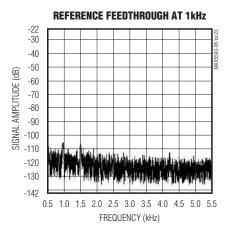


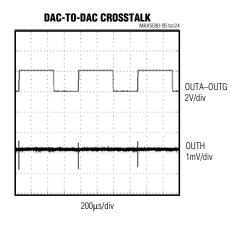


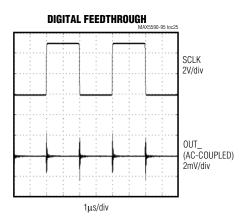


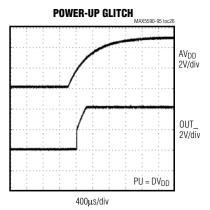


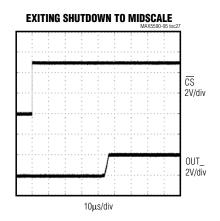

Typical Operating Characteristics (continued)

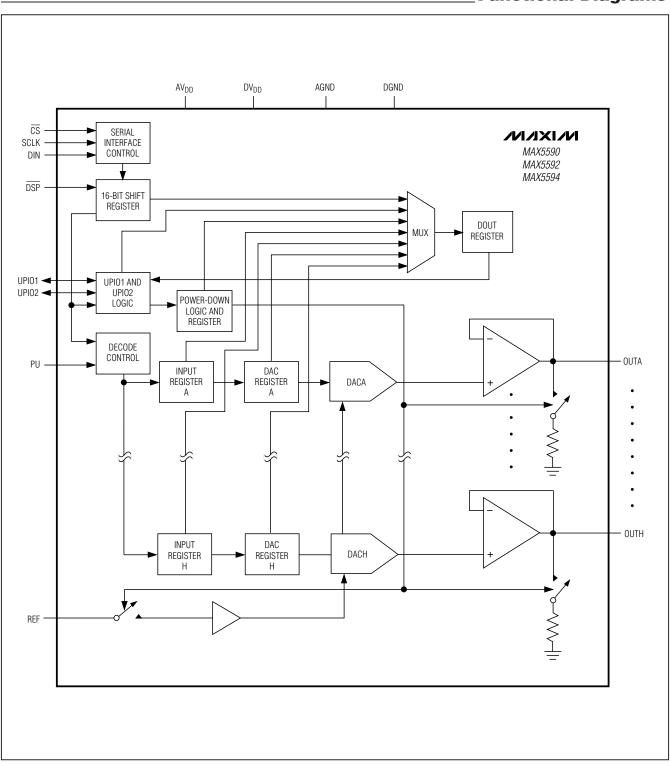

 $(AV_{DD} = DV_{DD} = 5V, V_{REF} = 4.096V, R_L = 10k\Omega, C_L = 100pF, speed mode = FAST, PU = unconnected, T_A = +25°C, unless otherwise noted.)$



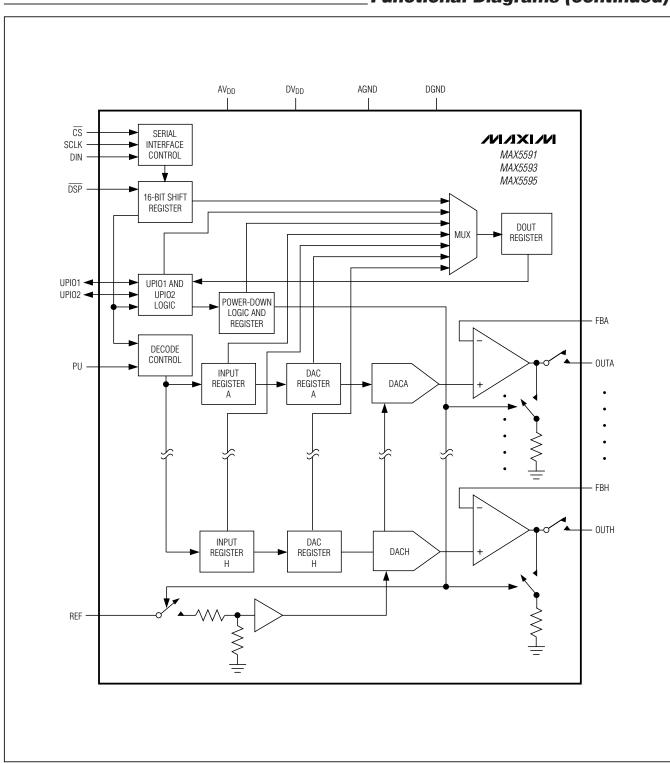








Pin Description


PIN			-
MAX5590 MAX5592 MAX5594	MAX5591 MAX5593 MAX5595	NAME	FUNCTION
1	1	AV_{DD}	Analog Supply
2	2	AGND	Analog Ground
3	3	OUTA	DACA Output
4, 8, 17, 21	_	N.C.	No Connection. Not internally connected.
5	6	OUTB	DACB Output
6	7	OUTC	DACC Output
7	10	OUTD	DACD Output
9	11	CS	Active-Low Chip-Select Input
10	12	SCLK	Serial Clock Input
11	13	DIN	Serial Data Input
12	14	DSP	Clock Enable. Connect $\overline{\text{DSP}}$ to DV_{DD} at power-up to transfer data on the rising edge of SCLK. Connect $\overline{\text{DSP}}$ to GND to transfer data on the falling edge of SCLK. Connect $\overline{\text{DSP}}$ to DGND at power-up to transfer data on the falling edge of SCLK.
13	15	DV _{DD}	Digital Supply
14	16	DGND	Digital Ground
15	17	UPIO1	User-Programmable Input/Output 1
16	18	UPIO2	User-Programmable Input/Output 2
18	19	OUTE	DACE Output
19	22	OUTF	DACF Output
20	23	OUTG	DACG Output
22	26	OUTH	DACH Output
23	27	PU	Power-Up State Select Input. Connect PU to DV _{DD} to set OUTA-OUTH to full scale upon power-up. Connect PU to DGND to set OUTA-OUTH to zero upon power-up. Leave PU unconnected at power-up to set OUTA-OUTH to midscale.
24	28	REF	Reference Input
_	4	FBA	Feedback for DACA
_	5	FBB	Feedback for DACB
_	8	FBC	Feedback for DACC
_	9	FBD	Feedback for DACD
_	20	FBE	Feedback for DACE
_	21	FBF	Feedback for DACF
_	24	FBG	Feedback for DACG
_	25	FBH	Feedback for DACH

14 ______ **/VI/XI/VI**

Functional Diagrams (continued)

Detailed Description

The MAX5590–MAX5595 octal, 12/10/8-bit, voltage-output DACs offer buffered outputs and a 3µs maximum settling time at the 12-bit level. The DACs operate from a single 2.7V to 5.25V analog supply and a separate 1.8V to AVDD digital supply. The MAX5590–MAX5595 include an input register and DAC register for each channel and a 16-bit data-in/data-out shift register. The 3-wire serial interface is compatible with SPI, QSPI, MICROWIRE, and DSP applications. The MAX5590– MAX5595 provide two user-programmable digital I/O ports, which are programmed through the serial interface. The externally selectable power-up states of the DAC outputs are either zero scale, midscale, or full scale.

Reference Input

The reference input, REF, accepts both AC and DC values with a voltage range extending from analog ground (AGND) to AV_{DD}. The voltage at REF sets the full-scale output of the DACs. Determine the output voltage using the following equations:

Unity-gain versions:

 $VOUT = (VREF \times CODE) / 2^N$

Force-sense versions (FB_ connected to OUT_):

 $VOUT = 0.5 \times (VREF \times CODE) / 2^N$

where CODE is the numeric value of the DAC's binary input code and N is the bits of resolution. For the MAX5590/MAX5591, N = 12 and CODE ranges from 0 to 4095. For the MAX5592/MAX5593, N = 10 and CODE ranges from 0 to 1023. For the MAX5594/MAX5595, N = 8 and CODE ranges from 0 to 255.

Output Buffers

The DACA and DACH output-buffer amplifiers of the MAX5590–MAX5595 are unity-gain stable with rail-to-rail output voltage swings and a typical slew rate of 3.6V/µs (FAST mode). The MAX5590/MAX5592/MAX5594 provide unity-gain outputs, while the MAX5591/MAX5593/MAX5595 provide force-sense outputs. For the MAX5591/MAX5593/MAX5595, access to the output amplifier's inverting input provides flexibility in output gain setting and signal conditioning (see the Applications Information section).

The MAX5590–MAX5595 offer FAST and SLOW settling-time modes. In the SLOW mode, the settling time is 6µs (max), and the supply current is 3.2mA (max). In the FAST mode, the settling time is 3µs (max), and the supply current is 8mA (max). See the *Digital Interface* section for settling-time mode programming details.

Use the serial interface to set the shutdown output impedance of the amplifiers to $1k\Omega$ or $100k\Omega$ for the MAX5590/MAX5592/MAX5594 and $1k\Omega$ or high impedance for the MAX5591/MAX5593/MAX5595. The DAC outputs can drive a $10k\Omega$ (typ) load and are stable with up to 500pF (typ) of capacitive load.

Power-On Reset

At power-up, all DAC outputs power up to full scale, midscale, or zero scale, depending on the configuration of the PU input. Connect PU to DVDD to set OUT_ to full scale upon power-up. Connect PU to digital ground (DGND) at power-up to set OUT_ to zero scale. Leave PU unconnected to set OUT_ to midscale.

_Digital Interface

The MAX5590–MAX5595 use a 3-wire serial interface that is compatible with SPI, QSPI, MICROWIRE, and DSP protocol applications (Figures 1 and 2). Connect $\overline{\text{DSP}}$ to DV_{DD} before power-up to clock data in on the rising edge of SCLK. Connect $\overline{\text{DSP}}$ to DGND before power-up to clock data in on the falling edge of SCLK. After power-up, the device enters DSP frame-sync mode on the first rising edge of $\overline{\text{DSP}}$. Refer to the *MAX5590–MAX5595 Programmer's Handbook* for details.

The MAX5590–MAX5595 include a 16-bit input shift register. The data is loaded into the input shift register through the serial interface. The 16 bits can be sent in two serial 8-bit packets or one 16-bit word (\overline{CS} must remain low until all 16 bits are transferred). The data is loaded MSB first. For the MAX5590/MAX5591, the 16 bits consist of 4 control bits (C3–C0) and 12 data bits (D11–D0) (see Table 1). For the 10-bit MAX5592/MAX5593 devices, D11–D2 are the data bits and D1 and D0 are sub-bits. For the 8-bit MAX5594/MAX5595 devices, D11–D4 are the data bits and D3–D0 are sub-bits. Set all sub-bits to zero for optimum performance.

Each DAC channel includes two registers: an input register and the DAC register. At power-up, the DAC output is set according to the state of PU. The DACs are double-buffered, which allows any of the following for each channel:

- Loading the input register without updating the DAC register
- Updating the DAC register from the input register
- Updating the input and DAC registers simultaneously

Table 1. Serial Write Data Format

MSB				·	·	16	BITS OF	SERIAL	DATA	·	·		·	·	LSB
С	ONTR	OL BIT	S						DATA	BITS					
СЗ	C2	C1	C0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
			SCLK DIN CS		tcsc tcsw	t _{DS}	DH (t _{CH} t _C			DO TCSH	t _{CS1}		-	
		DO	OUTDC1*				X		DOUT VALID		$\langle \rangle$				
			OUTDC0 OR				t _{D02}	d DOUT VA	LID \S)	V			_	

*UPIO1/UPIO2 CONFIGURED AS DOUTDC_ (DAISY-CHAIN DATA OUTPUT, MODE 0 OR 1) OR DOUTRB (READ-BACK DATA OUTPUT). SEE THE *DATA OUTPUT (DOUTRB, DOUTDC0, DOUTDC1)* SECTION FOR DETAILS.

Figure 1. Serial-Interface Timing Diagram (DSP Mode Disabled)

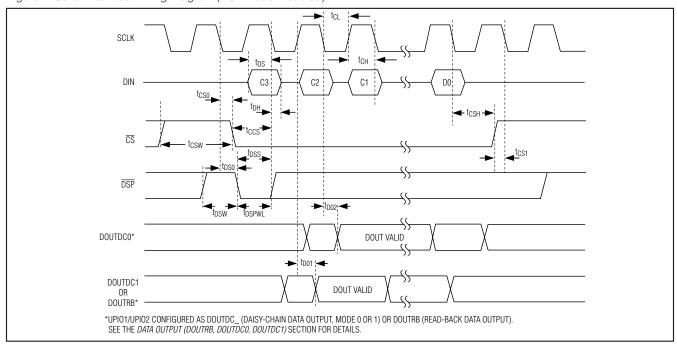


Figure 2. Serial-Interface Timing Diagram (DSP Mode Enabled)

Serial-Interface Programming Commands

Tables 2a, 2b, and 2c provide all of the serial-interface programming commands for the MAX5590–MAX5595. Table 2a shows the basic DAC programming commands, Table 2b gives the advanced-feature programming commands, and Table 2c provides the 24-bit read commands. Figures 3 and 4 provide the serial-interface diagrams for read and write operations.

Loading Input and DAC Registers

The MAX5590–MAX5595 contain a 16-bit shift register that is followed by a 12-bit input register and a 12-bit DAC register for each channel (see the *Functional Diagrams*). Tables 3, 4, and 5 highlight a few of the commands that handle the loading of the input and DAC registers. See Table 2a for all DAC programming commands.

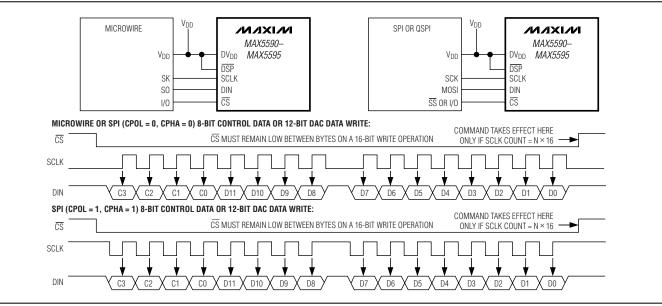


Figure 3. MICROWIRE and SPI Single DAC Writes (CPOL = 0, CPHA = 0 or CPOL = 1, CPHA = 1)

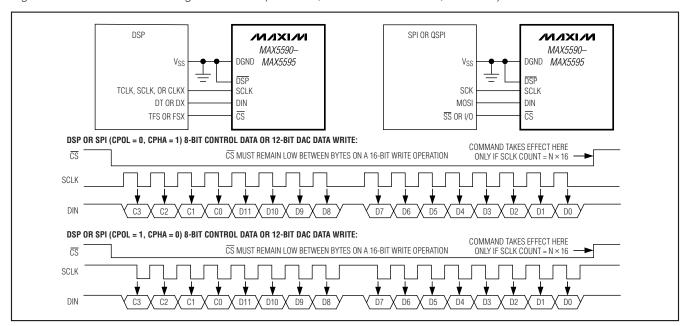


Figure 4. DSP and SPI Single DAC Writes (CPOL = 0, CPHA = 1 or CPOL = 1, CPHA = 0)

__ /VI/XI/VI

Table 2a. DAC Programming Commands

DATA	CC	ONTRO	OL BI	ГS						DATA	BITS						FUNCTION
DATA	СЗ	C2	C1	C0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
INPUT	REGI	STER	S (A-	H)													
DIN	0	0	0	0	D11	D10	D9	D8	D7	D6	D5	D4	D3/0	D2/0	D1/0	D0/0	Load input register A from shift register; DAC registers are unchanged. DAC outputs are unchanged.*
DIN	0	0	0	1	D11	D10	D9	D8	D7	D6	D5	D4	D3/0	D2/0	D1/0	D0/0	Load input register B from shift register; DAC registers are unchanged. DAC outputs are unchanged.*
DIN	0	0	1	0	D11	D10	D9	D8	D7	D6	D5	D4	D3/0	D2/0	D1/0	D0/0	Load input register C from shift register; DAC registers are unchanged. DAC outputs are unchanged.*
DIN	0	0	1	1	D11	D10	D9	D8	D7	D6	D5	D4	D3/0	D2/0	D1/0	D0/0	Load input register D from shift register; DAC registers are unchanged. DAC outputs are unchanged.*
DIN	0	1	0	0	D11	D10	D9	D8	D7	D6	D5	D4	D3/0	D2/0	D1/0	D0/0	Load input register E from shift register; DAC registers are unchanged. DAC outputs are unchanged.*
DIN	0	1	0	1	D11	D10	D9	D8	D7	D6	D5	D4	D3/0	D2/0	D1/0	D0/0	Load input register F from shift register; DAC registers are unchanged. DAC outputs are unchanged.*
DIN	0	1	1	0	D11	D10	D9	D8	D7	D6	D5	D4	D3/0	D2/0	D1/0	D0/0	Load input register G from shift register; DAC registers are unchanged. DAC outputs are unchanged.*
DIN	0	1	1	1	D11	D10	D9	D8	D7	D6	D5	D4	D3/0	D2/0	D1/0	D0/0	Load input register H from shift register; DAC registers are unchanged. DAC outputs are unchanged.*

^{*}For the MAX5592/MAX5593 (10-bit version), D11–D2 are the significant bits and D1 and D0 are sub-bits. For the MAX5594/MAX5595 (8-bit version), D11–D4 are the significant bits and D3–D0 are sub-bits. Set all sub-bits to zero during the write commands.

CONTROL BITS DATA BITS DATA **FUNCTION** C3 C2 C1 C0 D11 D10 D9 D8 **D7** D6 D5 D4 D3 D2 D1 D0 SELECT BITS Load DAC register "_" from input register "_" Χ Χ Χ MF MC MB MA DIN 0 0 0 Χ MG ME MD MΗ when $M_{-} = 1$. DAC register "_" is unchanged if $M_{-} = 0$. LOADING INPUT AND DAC REGISTERS (A-H) Load all input registers A-H from shift register; DAC registers are DIN 0 D11 D10 D9 D8 D7 D6 D5 D4 D3/0 D2/0 D1/0 D0/0 unchanged. DAC outputs are unchanged.* Load all input and DAC registers A-H from shift DIN 0 0 D11 D10 D9 D8 D7 D6 D5 D4 D3/0 D2/0 D1/0 D0/0 register. DAC outputs updated. **SHUTDOWN BITS** Write DACA-DACD DIN 1 0 1 0 0 0 0 PDD1 PDD0 PDC1 PDC0 PDB1 PDB0 PDA1 PDA0 shutdown-mode bits. 1 See Table 8 DIN 0 0 0 0 Χ Χ Χ Χ Χ Read-back DACA-DACD **DOUTRB** Χ Χ Χ Χ Χ PDD1 PDD0 PDC1 PDC0 PDB1 PDB0 PDA1 PDA0 shutdown-mode bits Χ Χ Χ Write DACE-DACH DIN 0 1 0 0 0 PDH1 PDH0 PDG1 PDG0 PDF1 PDF0 PDE1 PDE0 shutdown-mode bits. 1 1 See Table 8. DIN 1 0 1 1 0 0 1 1 Χ Χ Χ Χ Χ Χ Χ Χ Read-back DACE-DACH shutdown-mode bits. Χ Χ PDH1 PDH0 PDG1 PDG0 PDF1 PDF0 PDE1 PDE0 **DOUTRB** Χ Χ Χ Χ Χ Χ Write DAC shutdown-PDCE PDCD PDCC PDCB PDCA DIN 0 1 0 1 0 0 PDCH PDCG PDCF control bits.

DIN

DOUTRB

1

Χ

0

Χ

1

Χ

1

Χ

0

Χ

1

Χ

0

Χ

1

Χ

Χ

Χ

Χ

Χ

Χ

Χ

PDCH PDCG PDCF PDCE PDCD PDCC PDCB PDCA shutdown-control settings.

Χ

Χ

Read-back DAC

X = Don't care.

^{*}For the MAX5592/MAX5593 (10-bit version), D11–D2 are the significant bits and D1 and D0 are sub-bits. For the MAX5594/MAX5595 (8-bit version), D11–D4 are the significant bits and D3–D0 are sub-bits. Set all sub-bits to zero during the write commands.

Table 2b. Advanced-Feature Programming Commands (continued)

DATA	С	ONTR	OL BITS	S						DATA	BITS						FUNCTION
DATA	C3	C2	C1	C0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
UPIO CON	NFIGUE	RATION	BITS														
DIN	1	0	1	1	0	1	1	0	UPSL2	UPSL1	UP3	UP2	UP1	UP0	Х	X	Write UPIO configuration bits. See Tables 19 and 22.
DIN	1	0	1	1	0	1	1	1	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Read-back UPIO
DOUTRB	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	UP3-2	UP2-2	UP1-2	UP0-2	UP3-1	UP2-1	UP1-1	UP0-1	configuration bits function.
SETTLING	3-TIME	-MODE	BITS														
DIN	1	0	1	1	1	0	0	0	SPDH	SPDG	SPDF	SPDE	SPDD	SPDC	SPDB	SPDA	Write settling-time bits for DACA-DACH (0 = SLOW [default, 6µs], 1 = FAST [3µs]).
DIN	1	0	1	1	1	0	0	1	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Read-back DAC settling-
DOUTRB	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	SPDH	SPDG	SPDF	SPDE	SPDD	SPDC	SPDB	SPDA	time bits.
UPIO_ AS	GPI (G	ENER.	AL-PUI	RPOSE	INPUT)											
DIN	1	0	1	1	1	0	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Read UPIO_inputs (valid
DOUTRB	X	X	X	X	X	X	X	X	X	X	RTP2	LF2	LR2	RTP1	LF1	LR1	only when UPIO1 or UPIO2 is configured as a general-purpose input.) See the GPI, GPOL, GPOH section.
CPOL AN	D CPH	A CON	TROL E	BITS													
DIN	1	1	0	0	0	0	0	0	Х	Х	Χ	Χ	Х	Х	CPOL	СРНА	Write CPOL, CPHA control bits. See Table 15.
DIN	1	1	0	0	0	0	0	1	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Read CPOL, CPHA control
DOUTRB	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	CPOL	CPHA	bits.

X = Don't care.

Buffered, Fast-Settling, Voltage-Output DACs

Table 2c. 24-Bit Read Commands

DATA	со	NTR	OL B	ITS														DATA	BITS														FUNCTION
DATA	СЗ	C2	C1	C0	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
READ INP	UT A	ND I	DAC	REG	ISTER	S A-H	1																										
DIN	1	1	0	1	0	0	0	Χ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Read input
DOUTRB	Х	х	Х	Х	X	X	х	X	DDA_11	DDA_10	6_ADD	DDA_8	DDA_7	DDA_6	DDA_5	DDA_4	DDA_3	DDA_2	DDA_1	DDA_0	IDA_11	1DA_10	6_ACI	IDA_8	IDA_7	IDA_6	IDA_5	IDA_4	IDA_3	IDA_2	IDA_1	IDA_0	register A and DAC register A (all 24 bits).**†
DIN	1	1	0	1	0	0	1	Χ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	
DOUTRB	Х	Х	Х	Х	х	х	х	х	DDB_11	DDB_10	6_BDD	DDB_8	DDB_7	DDB_6	DDB_5	DDB_4	DDB_3	DDB_2	DDB_1	DDB_0	IDB_11	IDB_10	6_80I	IDB_8	IDB_7	IDB_6	IDB_5	IDB_4	IDB_3	IDB_2	IDB_1	0_80l	Read input register B and DAC register B (all 24 bits).**†
DIN	1	1	0	1	0	1	0	Χ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Χ	Χ	Χ	Χ	Х	Х	Х	Х	Daniel in and
DOUTRB	Х	Х	Х	Х	Х	Х	х	х	DDC_11	DDC_10	6-DDC	DDC_8	DDC_7	DDC_6	DDC_5	DDC_4	DDC_3	DDC_2	DDC_1	DDC_0	IDC_11	IDC_10	IDC_9	IDC_8	IDC_7	IDC_6	IDC_5	IDC_4	IDC_3	IDC_2	IDC_1	IDC_0	Read input register C and DAC register C (all 24 bits).**†
DIN	1	1	0	1	0	1	1	Х	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Χ	Χ	Χ	Х	Х	Х	Х	Х	
DOUTRB	Х	Х	Х	Х	х	х	х	х	DDD_11	DDD_10	6-000	8_ddd	7_000	9-000	5_000	DDD_4	DDD_3	DDD_2	DDD_1	DDD_0	IDD_11	IDD_10	6 ⁻ QQI	8_DD_8	IDD_7	IDD_6	PD_5	IDD_4	E_ddl	IDD_2	IDD_1	0 ⁻ QQI	Read input register D and DAC register D (all 24 bits).**†
DIN	1	1	0	1	1	0	0	Χ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	
DOUTRB	Х	Х	х	Х	Х	х	х	х	DDE_11	DDE_10	6_3dd	DDE_8	DDE_7	DDE_6	DDE_5	DDE_4	DDE_3	DDE_2	DDE_1	DDE_0	IDE_11	IDE_10	IDE_9	IDE_8	IDE_7	IDE_6	IDE_5	IDE_4	IDE_3	IDE_2	IDE_1	IDE_0	Read input register E and DAC register E (all 24 bits).**†
DIN	1	1	0	1	1	0	1	Х	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Χ	Χ	Х	Χ	Х	Х	Х	Х	
DOUTRB	Х	Х	Х	Х	Х	х	х	х	DDF_11	DDF_10	6_ADD	DDF_8	DDF_7	DDF_6	DDF_5	DDF_4	DDF_3	DDF_2	DDF_1	DDF_0	IDF_11	IDF_10	IDF_9	IDF_8	IDF_7	IDF_6	IDF_5	IDF_4	IDF_3	IDF_2	IDF_1	IDF_0	Read input register F and DAC register F (all 24 bits).**†
DIN	1	1	0	1	1	1	0	Х	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Χ	Χ	Х	Х	Х	Х	Х	Х	
DOUTRB	х	Х	Х	Х	х	х	х	х	DDG_11	DDG_10	6_DDG	DDG_8	DDG_7	DDG_6	DDG_5	DDG_4	DDG_3	DDG_2	DDG_1	DDG_0	IDG_11	IDG_10	6_9QI	IDG_8	IDG_7	IDG_6	IDG_5	IDG_4	IDG_3	1DG_2	IDG_1	1DG_0	Read input register G and DAC register G (all 24 bits).** [†]
DIN	1	1	0	1	1	1	1	Х	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Χ	Χ	Х	Х	Х	Х	Х	Х	
DOUTRB	Х	х	Х	Х	х	х	х	х	DDH_11	DDH_10	6 ⁻ HQQ	8_HQQ	PDH_7	9_HQQ	DDH_5	DDH_4	DDH_3	DDH_2	DDH_1	DDH_0	IDH_11	IDH_10	6_HOI	1DH_8	IDH_7	1DH_6	1DH_5	IDH_4	IDH_3	IDH_2	IDH_1	0_HQI	Read input register H and DAC register H (all 24 bits).**†

X = Don't care.

^{**}D23–D12 represent the 12-bit data from the corresponding DAC register. D11–D0 represent the 12-bit data from the corresponding input register. For the MAX5592/MAX5593, bits D13, D12, D1, and D0 are zero bits. For the MAX5594/MAX5595, bits D15–D12 and D3–D0 are zero bits.

[†] During readback, all ones (code FF) must be clocked into DIN for all 24 bits. No command can be issued before all 24 bits have been clocked out.

DAC Programming Examples:

To load input register A from the shift register, leaving DAC register A unchanged (DAC output unchanged), use the command in Table 3.

The MAX5590–MAX5595 can load all of the input registers (A–H) simultaneously from the shift register, leaving the DAC registers unchanged (DAC output unchanged), by using the command in Table 4.

To load all of the input registers (A–H) and all of the DAC registers (A–H) simultaneously, use the command in Table 5.

For the 10-bit and 8-bit versions, set sub-bits = 0 for best performance.

Advanced-Feature Programming Commands Select Bits (M)

The select bits allow synchronous updating of any combination of channels. The select bits command the loading of the DAC register from the input register of each channel. Set the select bit M_ = 1 to load the DAC register "_" with data from the input register "_", where "_" is replaced with A, B, or C and so on through H, depending on the selected channel. Setting the select bit M_ = 0 results in no action for that channel (Table 6).

Select Bits Programming Example:

To load DAC register B from input register B while keeping other channels (A, C-H) unchanged, set MB = 1 and $M_{-} = 0$ (Table 7).

Table 3. Load Input Register A from Shift Register

DATA		CONTR	OL BITS	3						DATA	BITS					
DIN	0	0	0	0	D11	D10	D9	D8	D7	D6	D5	D4	D3/0	D2/0	D1/0	D0/0

Table 4. Load Input Registers (A-H) from Shift Register

DATA	(CONTR	OL BITS	3						DATA	BITS					
DIN	1	0	0	1	D11	D10	D9	D8	D7	D6	D5	D4	D3/0	D2/0	D1/0	D0/0

Table 5. Load Input Registers (A-H) and DAC Registers (A-H) from Shift Register

DATA		CONTR	OL BITS	3						DATA	BITS					
DIN	1	0	1	0	D11	D10	D9	D8	D7	D6	D5	D4	D3/0	D2/0	D1/0	D0/0

Table 6. Select Bits (M_)

DATA			(CONTR	OL BITS							DATA	BITS			
DIN	1	0	0	0	Χ	Χ	Χ	Χ	MH	MG	MF	ME	MD	MC	MB	MA

X = Don't care.

Table 7. Select Bits Programming Example

DATA												DATA	BITS			
DIN	1	0	0	0	Χ	Χ	0	0	0	0	0	0	0	0	1	0

X = Don't care.

Shutdown-Mode Bits (PD 0, PD 1)

Use the shutdown-mode bits and control bits to shut down each DAC independently. The shutdown-mode bits determine the output state of the selected channels. The shutdown-control bits put the selected channels into shutdown-mode. To select the shutdown mode for DACA-DACH, set PD_0 and PD_1 according to Table 8 (where "_" is replaced with one of the selected channels (A-H)). The three possible states for unity-gain versions are 1) normal operation, 2) shutdown with

Table 8. Shutdown-Mode Bits

PD_1	PD_0	DESCRIPTIONS
0	0	Shutdown with $1k\Omega$ termination to ground on DAC_ output.
0	1	Shutdown with $100k\Omega$ termination to ground on DAC_ output for unity-gain versions. Shutdown with high-impedance output for force-sense versions.
1	0	Ignored.
1	1	DAC_ is powered up in its normal operating mode.

 $1k\Omega$ output impedance, and 3) shutdown with $100k\Omega$ output impedance. The three possible states for forcesense versions are 1) normal operation, 2) shutdown with $1k\Omega$ output impedance, and 3) shutdown with the output in a high-impedance state. Tables 9 and 10 show the commands for writing to the shutdown-mode bits. Table 11 shows the commands for writing the shutdown-control bits. This command is required to put the selected channels into shutdown.

Always write the shutdown-mode-bits command first and then write the shutdown-control-bits command to properly shut down the selected channels. The shutdown-control-bits command can be written at any time after the shutdown-mode-bits command. It does not have to immediately follow the shutdown-mode-bits command.

Settling-Time-Mode Bits (SPD_)

The settling-time-mode bits select the settling time (FAST mode or SLOW mode) of the MAX5590–MAX5595. Set SPD_ = 1 to select FAST mode or set SPD_ = 0 to select SLOW mode, where "_" is replaced by A, B, or C and so on through H, depending on the selected channel (Table 12). FAST mode provides a 3µs maximum settling time, and SLOW mode provides a 6µs maximum settling time.

Table 9. Shutdown-Mode Write Command (DACA-DACD)

DATA	(CONTR	OL BITS	3						DATA	BITS					
DIN	1	0	1	1	0	0	0	0	PDD1	PDD0	PDC1	PDC0	PDB1	PDB0	PDA1	PDA0

X = Don't care.

Table 10. Shutdown-Mode Write Command (DACE-DACH)

DATA	(CONTR	OL BITS	3						DATA						
DIN	1	0	1	1	0	0	1	0	PDH1	PDH0	PDG1	PDG0	PDF1	PDF0	PDE1	PDE0

X = Don't care.

Table 11. Shutdown-Control-Bits Write Command

DATA	•	CONTR	OL BITS	;						DATA	BITS					
DIN	1	0	1	1	0	1	0	0	PDCH	PDCG	PDCF	PDCE	PDCD	PDCC	PDCB	PDCA

X = Don't care.

Table 12. Settling-Time-Mode Write Command

DATA			(CONTR	OL BITS	3						DATA	BITS			
DIN	1	0	1	1	1	0	0	0	SPDH	SPDG	SPDF	SPDE	SPDD	SPDC	SPDB	SPDA

Settling-Time-Mode Write Example:

To configure DACA and DACD into FAST mode and DACB and DACC into SLOW mode, use the command in Table 13.

To read back the settling-time-mode bits, use the command in Table 14.

CPOL and CPHA Control Bits

The CPOL and CPHA control bits of the MAX5590–MAX5595 are defined the same as the CPOL and CPHA bits in the SPI standard. Set the DAC's CPOL and CPHA bits to CPOL = 0 and CPHA = 0 or CPOL = 1 and CPHA = 1 for MICROWIRE and SPI applications requiring the clocking of data in on the ris-

ing edge of SCLK. Set the DAC's CPOL and CPHA bits to CPOL = 0 and CPHA = 1 or CPOL = 1 and CPHA = 0 for DSP and SPI applications, requiring the clocking of data in on the falling edge of SCLK (refer to the *Programmer's Handbook* and see Table 15 for details). At power-up, if $\overline{\text{DSP}} = \text{DV}_{\text{DD}}$, the default value of CPHA is zero and if $\overline{\text{DSP}} = \text{DGND}$, the default value of CPHA is one. The default value of CPOL is zero at power-up.

To write to the CPOL and CPHA bits, use the command in Table 16.

To read back the device's CPOL and CPHA bits, use the command in Table 17.

Table 13. Settling-Time-Mode Write Example

DA	ГА	(CONTR	OL BITS	3						DATA	BITS					
DII	Ν	1	0	1	1	1	0	0	0	Χ	Χ	Χ	Χ	1	0	0	1

X = Don't care.

Table 14. Settling-Time-Mode Read Command

DATA			(CONTR	OL BITS	3						DATA	BITS			
DIN	1	0	1	1	1	0	0	1	Χ	X	Χ	Χ	Χ	Х	Χ	Х
DOUTRB	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	SPDH	SPDG	SPDF	SPDE	SPDD	SPDC	SPDB	SPDA

X = Don't care.

Table 15. CPOL and CPHA Bits

CPOL	СРНА	DESCRIPTION
0	0	Default values at power-up when $\overline{\text{DSP}}$ is connected to DV _{DD} . Data is clocked in on the rising edge of SCLK.
0	1	Default values at power-up when $\overline{\rm DSP}$ is connected to DGND. Data is clocked in on the falling edge of SCLK.
1	0	Data is clocked in on the falling edge of SCLK.
1	1	Data is clocked in on the rising edge of SCLK.

Table 16. CPOL and CPHA Write Command

DATA		CONTR	OL BITS	3						DATA	BITS					
DIN	1	1	0	0	0	0	0	0	Χ	Χ	Χ	Χ	Χ	Χ	CPOL	CPHA

X = Don't care.

Table 17. CPOL and CPHA Read Command

DATA	(CONTR	OL BITS	S						DATA	BITS					
DIN	1	1	0	0	0	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
DOUTRB	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Х	Χ	Χ	CPOL	CPHA

X = Don't care.

UPIO Bits (UPSL1, UPSL2, UP0-UP3)

The MAX5590–MAX5595 provide two user-programmable input/output (UPIO) ports: UPIO1 and UPIO2. These ports have 15 possible configurations, as shown in Table 22. UPIO1 and UPIO2 can be programmed independently or simultaneously by writing to the UPSL1, UPSL2, and UPO–UP3 bits (Table 18).

Table 19 shows how UPIO1 and UPIO2 are selected for configuration. The UP0–UP3 bits select the desired functions for UPIO1 and/or UPIO2 (Table 22).

UPIO Programming Example:

To set only UPIO1 as LDAC and leave UPIO2 unchanged, use the command in Table 20.

The UPIO selection and configuration bits can be read back from the MAX5590–MAX5595 when UPIO1 or UPIO2 is configured as a DOUTRB output. Table 21 shows the read-back data format for the UPIO bits. Writing the command in Table 21 initiates a read operation of the UPIO bits. The data is clocked out starting on the ninth clock cycle of the sequence. Bits UP3-2 through UP0-2 provide the UP3–UP0 configuration bits for UPIO2 (Table 22), and bits UP3-1 through UP0-1 provide the UP3–UP0 configuration bits for UPIO1.

Table 18. UPIO Write Command

DATA	(CONTR	OL BITS	3						DATA	BITS					
DIN	1	0	1	1	0	1	1	0	UPSL2	UPSL1	UP3	UP2	UP1	UP0	Χ	Х

X = Don't care.

Table 19. UPIO Selection Bits (UPSL1 and UPSL2)

UPSL2	UPSL1	UPIO PORT SELECTED
0	0	None selected
0	1	UPIO1 selected
1	0	UPIO2 selected
1	1	Both UPIO1 and UPIO2 selected

Table 20. UPIO Programming Example

DATA	(CONTR	OL BITS	}						DATA	BITS					
DIN	1	0	1	1	0	1	1	0	0	1	0	0	0	0	Χ	Χ

X = Don't care.

Table 21. UPIO Read Command

DATA	(CONTR	OL BITS	3						DATA	BITS					
DIN	1	0	1	1	0	1	1	1	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ
DOUTRB	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	UP3-2	UP2-2	UP1-2	UP0-2	UP3-1	UP2-1	UP1-1	UP0-1

X = Don't care.

UPIO Configuration

Table 22 lists the possible configurations for UPIO1 and UPIO2. UPIO1 and UPIO2 use the selected function when configured by the UP3–UP0 configuration bits.

LDAC

LDAC controls the loading of the DAC registers. When LDAC is high, the DAC registers are latched, and any change in the input registers does not affect the contents of the DAC registers or the DAC outputs. When LDAC is low, the DAC registers are transparent, and the values stored in the input registers are fed directly to the DAC registers, and the DAC outputs are updated.

Drive LDAC low to asynchronously load the DAC registers from their corresponding input registers (DACs that are in shutdown remain shut down). The LDAC input does not require any activity on CS, SCLK, or DIN to take effect. If LDAC is brought low coincident with a rising edge of CS (which executes a serial command modifying the value of either DAC input register), then LDAC must remain asserted for at least 120ns following the CS rising edge. This requirement applies only for serial commands that modify the value of the DAC input registers. See Figures 5 and 6 for timing details.

Table 22. UPIO Configuration Register Bits (UP3-UP0)

UPIO	CONFIG	URATION	N BITS	FUNCTION	DESCRIPTION
UP3	UP2	UP1	UP0	FUNCTION	DESCRIPTION
0	0	0	0	LDAC	Active-Low Load DAC Input. Drive low to asynchronously load all DAC registers with data from input registers.
0	0	0	1	SET	Active-Low Input. Drive low to set all input and DAC registers to full scale.
0	0	1	0	MID	Active-Low Input. Drive low to set all input and DAC registers to midscale.
0	0	1	1	CLR	Active-Low Input. Drive low to set all input and DAC registers to zero scale.
0	1	0	0	PDL	Active-Low Power-Down Lockout Input. Drive low to disable software shutdown.
0	1	0	1	Reserved	This mode is reserved. Do not use.
0	1	1	0	SHDN1K	Active-Low $1k\Omega$ Shutdown Input. Overrides PD_1 and PD_0 settings. For the MAX5590/MAX5592/MAX5594, drive $\overline{SHDN1K}$ low to pull OUTA-OUTH to AGND with $1k\Omega$. For the MAX5591/MAX5593/MAX5595, drive $\overline{SHDN1K}$ low to leave OUTA-OUTH high impedance.
0	1	1	1	SHDN100K	Active-Low 100k Ω Shutdown Input. Overrides PD_1 and PD_0 settings. For the MAX5590/MAX5592/MAX5594, drive $\overline{SHDN100K}$ low to pull OUTA-OUTH to AGND with 100k Ω . For the MAX5591/MAX5593/MAX5595, drive low to leave OUTA-OUTH high impedance.
1	0	0	0	DOUTRB	Data Read-Back Output
1	0	0	1	DOUTDC0	Mode 0 Daisy-Chain Data Output. Data is clocked out on the falling edge of
1	0	1	0	DOUTDC1	Mode 1 Daisy-Chain Data Output. Data is clocked out on the rising edge of SCLK.
1	0	1	1	GPI	General-Purpose Logic Input
1	1	0	0	GPOL	General-Purpose Logic-Low Output
1	1	0	1	GPOH	General-Purpose Logic-High Output
1	1	1	0	TOGG	Toggle Input. Toggles DAC outputs between data in input registers and data in DAC registers. Drive low to set all DAC outputs to values stored in input registers. Drive high to set all DAC outputs to values stored in DAC registers.
1	1	1	1	FAST	Fast/Slow Settling-Time-Mode Input. Drive low to select FAST (3µs) mode or drive high to select SLOW (6µs) settling mode. Overrides the SPDA–SPDH settings.

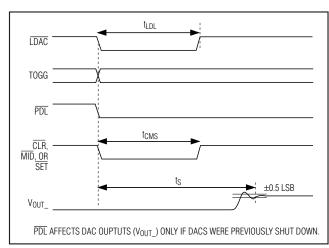


Figure 5. Asynchronous Signal Timing

SET, MID, CLR

The $\overline{\text{SET}}$, $\overline{\text{MID}}$, and $\overline{\text{CLR}}$ signals force the DAC outputs to full scale, midscale, or zero scale (Figure 5). These signals cannot be active at the same time.

The active-low SET input forces the DAC outputs to full scale when SET is low. When SET is high, the DAC outputs follow the data in the DAC registers.

The active-low $\overline{\text{MID}}$ input forces the DAC outputs to midscale when $\overline{\text{MID}}$ is low. When $\overline{\text{MID}}$ is high, the DAC outputs follow the data in the DAC registers.

The active-low $\overline{\text{CLR}}$ input forces the DAC outputs to zero scale when $\overline{\text{CLR}}$ is low. When $\overline{\text{CLR}}$ is high, the DAC outputs follow the data in the DAC registers.

If $\overline{\text{CLR}}$, $\overline{\text{MID}}$, or $\overline{\text{SET}}$ signals go low during a write command, reload the data to ensure accurate results.

Power-Down Lockout (PDL)

The PDL active-low, software-shutdown lockout input overrides (not overwrites) the PD_0 and PD_1 shutdown-mode bits. PDL cannot be active at the same time as SHDN1K or SHDN100K (see the *Shutdown Mode (SHDN1K, SHDN100K)* section).

If the PD_0 and PD_1 bits command the DAC to shut down prior to PDL going low, the DAC returns to shutdown mode immediately after PDL goes high, unless the PD_0 and PD_1 bits were modified through the serial interface in the meantime.

Shutdown Mode (SHDN1K, SHDN100K)

The SHDN1K and SHDN100K are active-low signals that override (not overwrite) the PD_1 and PD_0 bit settings. For the MAX5590/MAX5592/MAX5594, drive

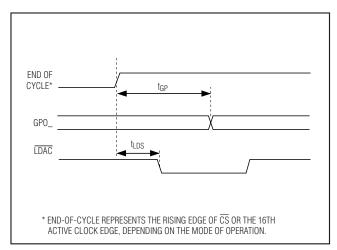


Figure 6. GPO_ and LDAC Signal Timing

SHDN1K low to select shutdown mode with OUTA-OUTH internally terminated with 1kΩ to ground, or drive SHDN100K low to select shutdown with an internal 100kΩ termination. For the MAX5591/MAX5593/MAX5595, drive SHDN1K low for shutdown with 1kΩ output termination, or drive SHDN100K low for shutdown with high-impedance outputs.

For proper shutdown, first select a shutdown mode (Table 8), then use the shutdown-control bits as listed in Table 2b.

Data Output (DOUTRB, DOUTDC0, DOUTDC1)

UPIO1 and UPIO2 can be configured as serial data outputs, DOUTRB (data out for read back), DOUTDC0 (data out for daisy-chaining, mode 0), and DOUTDC1 (data out for daisy-chaining, mode 1). The differences between DOUTRB and DOUTDC0 (or DOUTDC1) are as follows:

- The source of read-back data on DOUTRB is the DOUT register. Daisy-chain DOUTDC_ data comes directly from the shift register.
- Read-back data on DOUTRB is only present after a DAC read command. Daisy-chain data is present on DOUTDC_ for any DAC write after the first 16 bits are written.
- The DOUTRB idle state (CS = high) for read back is high impedance. Daisy-chain DOUTDC_ idles high when inactive to avoid floating the data input in the next device in the daisy-chain.

See Figures 1 and 2 for timing details.

GPI, GPOL, GPOH

UPIO1 and UPIO2 can each be configured as a general-purpose input (GPI), a general-purpose output low (GPOL), or a general-purpose output high (GPOH).

The GPI can serve to detect interrupts from μPs or microcontrollers. The GPI has three functions:

- 1) Sample the signal at GPI at the time of the read (RTP1 and RTP2).
- 2) Detect whether or not a falling edge has occurred since the last read or reset (LF1 and LF2).
- 3) Detect whether or not a rising edge has occurred since the last read or reset (LR1 and LR2).

RTP1, LF1, and LR1 represent the data read from UPIO1; RTP2, LF2, and LR2 represent the data read from UPIO2.

To issue a read command for the UPIO configured as GPI, use the command in Table 23.

Once the command is issued, RTP1 and RTP2 provide the real-time status (0 or 1) of the inputs at UPIO1 or UPIO2, respectively, at the time of the read. If LF2 or LF1 is one, then a falling edge has occurred on the respective UPIO1 or UPIO2 input since the last read or reset. If LR2 or LR1 is one, then a rising edge has occurred since the last read or reset.

GPOL outputs a constant low, and GPOH outputs a constant high. See Figure 6.

TOGG

Use the TOGG input to toggle the DAC outputs between the values in the input registers and DAC registers. A delay of greater than 100ns from the end of the previous write command is required before the TOGG signal can be correctly switched between the new value and the previously stored value. When TOGG = 0, the output follows the information in the input registers. When TOGG = 1, the output follows the information in the DAC register (Figure 5).

FAST

The MAX5590–MAX5595 have two settling-time-mode options: FAST (3 μ s max) and SLOW (6 μ s max). To select the FAST mode, drive FAST low, and to select SLOW mode, drive FAST high. This overrides (not overwrites) the SPDA–SPDH bit settings.

Table 23. GPI Read Command

DATA	CONTROL BITS			CONTROL BITS DATA BITS												
DIN	1	0	1	1	1	0	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х
DOUTRB	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	RTP2	LF2	LR2	RTP1	LF1	LR1

X = Don't care.

Table 24. Unipolar Code Table (Gain = +1)

DA	CONTE	NTS	ANALOG OUTPUT		
MSB		LSB	ANALOG OUTPUT		
1111	1111	1111	+V _{REF} (4095 / 4096)		
1000	0000	0001	+V _{REF} (2049 / 4096)		
1000	0000	0000	+V _{REF} (2048 / 4096) = V _{REF} / 2		
0111	1111	1111	+V _{REF} (2047 / 4096)		
0000	0000	0001	+V _{REF} (1 / 4096)		
0000	0000	0000	0		

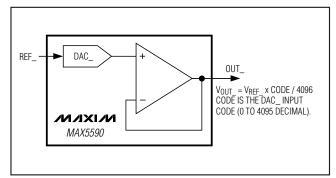


Figure 7. Unipolar Output Circuit

Applications Information

Unipolar Output

Figure 7 shows the unity-gain MAX5590 in a unipolar output configuration. Table 24 lists the unipolar output codes.

Bipolar Output

The MAX5590 outputs can be configured for bipolar operation, as shown in Figure 8. The output voltage is given by the following equation:

where CODE represents the numeric value of the DAC's binary input code (0 to 4095 decimal). Table 25 shows digital codes and the corresponding output voltage for the Figure 8 circuit.

Configurable Output Gain

The MAX5591/MAX5593/MAX5595 have force-sense outputs, which provide a direct connection to the inverting terminal of the output op amp, yielding the most flexibility. The force-sense output has the advantage that specific gains can be set externally for a given application. The gain error for the MAX5591/MAX5593/MAX5595 is specified in a unity-gain configuration (opamp output and inverting terminals connected), and additional gain error results from external resistor tolerances. The force-sense DACs allow many useful circuits to be created with only a few simple external components.

An example of a custom, fixed gain using the MAX5591's force-sense output is shown in Figure 9. In this example, the external reference is set to 1.25V, and the gain is set to +1.1V/V with external discrete resistors to provide an approximate 0 to 1.375V DAC output voltage range.

 $V_{OUT} = [(0.5 \times V_{REF} \times CODE) / 4096] \times [1 + (R2 / R1)]$ where CODE represents the numeric value of the DAC's binary input code (0 to 4095 decimal).

In this example, R2 = $12k\Omega$ and R1 = $10k\Omega$ to set the gain = 1.1V/V.

 $V_{OUT} = [(0.5 \times 1.25 V \times CODE) / 4096] \times 2.2$

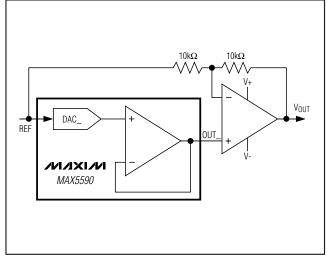


Figure 8. Bipolar Output Circuit

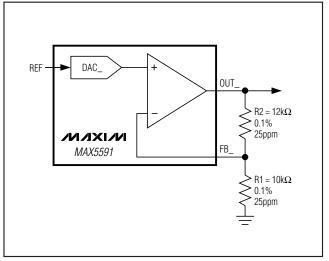


Figure 9. Configurable Output Gain

Table 25. Bipolar Code Table (Gain = +1)

DAG	CONTE	NTS	ANALOG OUTPUT		
MSB		LSB	ANALOG OUTPUT		
1111	1111	1111	+V _{REF} (2047 / 2048)		
1000	0000	0001	+V _{REF} (1 / 2048)		
1000	0000	0000	0		
0111	1111	1111	-V _{REF} (1 / 2048)		
0000	0000	0001	-V _{REF} (2047 / 2048)		
0000	0000	0000	-V _{REF} (2048 / 2048) = -V _{REF}		

Power-Supply and Layout Considerations

Bypass the analog and digital power supplies by using a 10µF capacitor in parallel with a 0.1µF capacitor to AGND and DGND (Figure 10). Minimize lead lengths to reduce lead inductance. Use shielding and/or ferrite beads to further increase isolation.

Digital and AC transient signals coupling to AGND can create noise at the output. Connect AGND to the highest quality ground available. Use proper grounding techniques, such as a multilayer board with a low-

inductance ground plane. Wire-wrapped boards and sockets are not recommended. For optimum system performance, use PC boards with separate analog and digital ground planes. Connect the two ground planes together at the low-impedance power-supply source.

Using separate power supplies for AV_{DD} and DV_{DD} improves noise immunity. Connect AGND and DGND at the low-impedance power-supply sources (Figure 11).

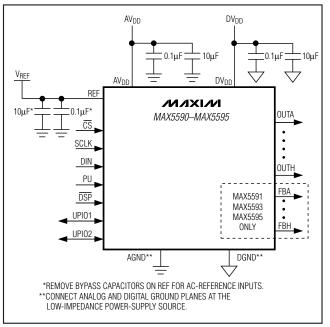


Figure 10. Bypassing Power Supplies AVDD, DVDD, and REF

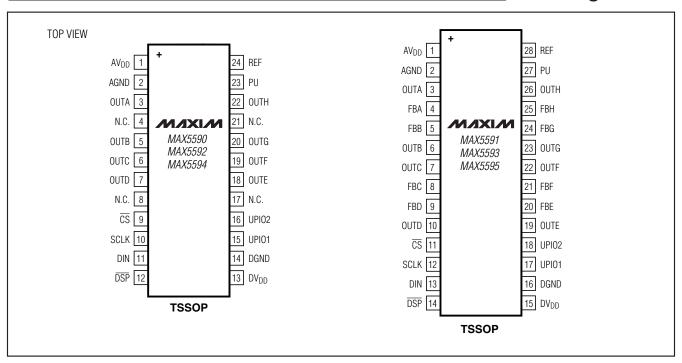


Figure 11. Separate Analog and Digital Power Supplies

32

Buffered, Fast-Settling, Octal, 12/10/8-Bit, Voltage-Output DACs

Pin Configurations

Selector Guide

PART	OUTPUT BUFFER CONFIGURATION	RESOLUTION (BITS)	INL (LSBs MAX)
MAX5590AEUG+	Unity Gain	12	±1
MAX5590BEUG+	Unity Gain	12	±4
MAX5591AEUI+	Force Sense	12	±1
MAX5591BEUI+	Force Sense	12	±4
MAX5592EUG+	Unity Gain	10	±1
MAX5593EUI+	Force Sense	10	±1
MAX5594EUG+	Unity Gain	8	±0.5
MAX5595EUI+	Force Sense	8	±0.5

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
24 TSSOP	U24+1	<u>21-0066</u>
28 TSSOP	U28+2	<u>21-0066</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	7/07	Updated EC table specifications	
3	1/10	Added lead-free information and amended data sheet	1–13, 16, 20, 32, 33

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.