

General Description

The MAX4822-MAX4825 8-channel relay drivers offer built-in kickback protection and drive +3V/+5V nonlatching or dual-coil-latching relays. Each independent open-drain output features a 2.7Ω (typ) on-resistance and is guaranteed to sink 70mA (min) of load current. These devices consume less than 300µA (max) quiescent current and have 1µA output off-leakage current. A Zener-kickback-protection circuit significantly reduces recovery time in applications where switching speed is critical.

The MAX4822/MAX4824 feature a unique power-save mode where the relay current, after activation, can be reduced to a level just above the relay hold-current threshold. This mode keeps the relay activated while significantly reducing the power consumption.

The MAX4822/MAX4823 feature a 10MHz SPITM-/ QSPI™-/MICROWIRE™-compatible serial interface. Input data is shifted into a shift register and latched to the outputs when $\overline{\text{CS}}$ transitions from low to high. Each data bit in the shift register corresponds to a specific output, allowing independent control of all outputs.

The MAX4824/MAX4825 feature a 4-bit parallel-input interface. The first 3 bits (A0, A1, A2) determine the output address, and the fourth bit (LVL) determines whether the selected output is switched on or off. Data is latched to the outputs when \overline{CS} transitions from low to high.

The MAX4822-MAX4825 feature separate set and reset functions, allowing turn-on or turn-off of all outputs simultaneously with a single control line. Built-in hysteresis (Schmidt trigger) on all digital inputs allows these devices to be used with slow-rising and falling signals, such as those from optocouplers or RC powerup initialization circuits. The MAX4822-MAX4825 are available in space-saving 4mm x 4mm, 20-pin thin QFN packages. They are specified over the -40°C to +85°C extended temperature range.

Applications

ATE Equipment

DSL Redundancy Protection (ADSL/VDSL/HDSL)

T1/E1 Redundancy Protection

T3/E3 Redundancy Protection

Industrial Equipment

Test Equipment (Oscilloscopes, Spectrum Analyzers)

SPI is a trademark of Motorola, Inc. QSPI is a trademark of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.

Features

- ♦ Built-In Zener Kickback Protection for Fast Recovery
- ♦ Programmable Power-Save Mode Reduces Relay Power Consumption (MAX4822/MAX4824)
- **♦ 10MHz SPI-/QSPI-/MICROWIRE-Compatible Serial** Interface
- **♦ Eight Independent Output Channels**
- ♦ Drive +3V and +5V Relays
- ♦ Guaranteed 70mA (min) Coil Drive Current
- ♦ Guaranteed 5Ω (max) Ron
- ♦ SET / RESET Functions to Turn On/Off All **Outputs Simultaneously**
- ♦ Serial Digital Output for Daisy Chaining
- ♦ Optional Parallel Interface (MAX4824/MAX4825)
- ♦ Low 300µA (max) Quiescent Supply Current
- ◆ Space-Saving, 4mm x 4mm, 20-Pin TQFN Package

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PACKAGE CODE
MAX4822ETP	-40°C to +85°C	20 TQFN-EP*	T2044-3
MAX4823ETP	-40°C to +85°C	20 TQFN-EP*	T2044-3
MAX4824ETP	-40°C to +85°C	20 TQFN-EP*	T2044-3
MAX4825ETP	-40°C to +85°C	20 TQFN-EP*	T2044-3

^{*}For maximum heat dissipation, packages have an exposed pad (EP) on the bottom. Solder exposed pad to GND.

Selector Guide

PART	INTERFACE	POWER SAVE
MAX4822	Serial	Yes
MAX4823	Serial	No
MAX4824	Parallel	Yes
MAX4825	Parallel	No

Pin Configurations appear at end of data sheet.

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Vcc0.3V t	to +6.0V
OUT0.3V	to +11V
CS, SCLK, DIN, SET, RESET, A0, A1, A2, LVL0.3V t	to +6.0V
DOUT0.3V to (V _{CC}	+ 0.3V)
PSAVE0.3V to (V _{CC}	
Continuous OUT_ Current (all outputs turned on)	150mA
Continuous OUT_ Current (single output turned on)	300mA

Continuous Power Dissipation (T	$\Delta = +70^{\circ}C$
20-Lead Thin QFN (derate 16.9r	
Operating Temperature Range	40°Ć to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Soldering Temperature (10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.7 \text{V to } +5.5 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = 2.7 \text{V}, T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Voltage	Vcc			2.3		5.5	V
Quiescent Current	laa	I _{OUT} _ = 0,	$V_{CC} = 3.6V$		160	300	
Quiescent Current	Icc	logic inputs = 0 or V _{CC}	$V_{CC} = 5.5V$		180	300	μΑ
D		foot 4 = 10MHz	$V_{CC} = 3.6V$		1.2		mA
Dynamic Supply Current	ID	f _{SCLK} =10MHz, C _{DOUT} = 50pF	$V_{CC} = 5.5V$		1.6		MA
Thermal Shutdown		Power-save disable threshold (I	Note 2)		+130		00
Thermai Shutdown		Output disable threshold (Note	3)		+150		°C
Power-On Reset		Transform from high voltage to	low voltage	0.6	1.2	2.0	V
Power-On Reset Hysteresis					140		mV
DIGITAL INPUTS (SCLK, DIN, \overline{CS}	, LVL, A0, A	1, A2, RESET, SET)					
Input Logic High Voltage	V	$V_{CC} = 2.7V \text{ to } 3.6V$		2.0			
Input Logic-High Voltage	V _{IH}	V _{CC} = 4.2V to 5.5V		2.4			V
Input Logic Low Voltage	\/	V _{CC} = 2.7V to 3.6V				0.6	V
Input Logic-Low Voltage	VIL	$V_{CC} = 4.2V \text{ to } 5.5V$				0.8	V
Input Logic Hysteresis	V _{HYST}				150		mV
Input Leakage Current	ILEAK	Input voltages = 0 or 5.5V		-1.0	+0.01	+1.0	μΑ
Input Capacitance	C _{IN}				5		рF
DIGITAL OUTPUT (DOUT)							
DOUT Low Voltage	Vol	ISINK = 6mA				0.4	V
DOUT High Voltage	VoH	ISOURCE = 0.5mA		V _{CC} - 0.5			V

__ /N/1XI/N

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.7 \text{V to } +5.5 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.} \text{ Typical values are at } V_{CC} = 2.7 \text{V}, T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
RELAY OUTPUT DRIVERS (OU	T1-OUT8)						
			PS = 001	0.65 x V _C C	0.7 x	0.75 x V _C C	
			PS = 010	0.55 x V _C C	0.6 x V _{CC}	0.65 x V _C C	
			PS = 011	0.45 x Vcc	0.5 x V _C C	0.55 x V _C C	
OUT_ Drive Voltage, Power-Save On (MAX4822)	Voutps_	V _{CC} = 2.7V (Note 4)	PS = 100	0.35 x V _C C	0.4 x V _{CC}	0.45 x V _C C	V
			PS = 101	0.25 x V _C C	0.3 x V _{CC}	0.35 x V _C C	
			PS = 110	0.15 x VCC	0.2 x V _{CC}	0.25 x V _{CC}	
			PS = 111	0.05 x V _C C	0.1 x V _{CC}	0.15 x Vcc	
OUT_ Drive Voltage, Power-Save On (MAX4824)	Voutps_	V _{CC} = 2.7V (1	Note 4)	0.35 x Vcc	0.4 x V _{CC}	0.45 x V _C C	V
OUT_ On-Resistance	Ron	$V_{CC} = 2.7V, I$	OUT_ = 70mA		2.7	5.0	Ω
OUT_ Off-Leakage Current	ILEAK	Vout_ = Vcc	, all outputs off	-1		+1	μΑ
Zener Clamping Voltage	VCLAMP	$I_{OUT} = 70 \text{m/s}$	A (Note 5)	7.0	9	10.5	V
SPI TIMING (MAX4822/MAX4823	3)						
Turn-On Time (OUT_)	ton	From rising e C _L = 50pF	dge of $\overline{\text{CS}}$, $R_L = 50\Omega$,			1.0	μs
Turn-Off Time (OUT_)	toff	From rising e C _L = 50pF	dge of \overline{CS} , $R_L = 50\Omega$,			3.0	μs
SCLK Frequency	fsclk			0		10	MHz
Cycle Time	t _{CH} + t _{CL}			100			ns
CS Fall-to-SCLK Rise Setup	tcss			50			ns
CS Rise-to-SCLK Hold	tcsh			50			ns
SCLK High Time	tсн			40			ns
SCLK Low Time	t _{CL}			40			ns
Data Setup Time	t _{DS}			20			ns

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.7V \text{ to } +5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = 2.7V, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.}$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Hold Time	t _{DH}		0			ns
SCLK Fall to DOUT Valid	t _{DO}	50% of SCLK to (V_{IH} , V_{IL} of D_{IN}), $C_L = 50pF$		17	28	ns
Rise Time (DIN, SCLK, $\overline{\text{CS}}$, $\overline{\text{SET}}$, $\overline{\text{RESET}}$)	tscr	20% of V _{CC} to 70% of V _{CC} , C _L = 50pF (Note 6)			2	μs
Fall Time (DIN, SCLK, $\overline{\text{CS}}$, RESET, SET)	tscf	20% of V _{CC} to 70% of V _{CC} , C _L = 50pF (Note 6)			2	μs
RESET Minimum Pulse Width	t _{RW}		70			ns
SET Minimum Pulse Width	tsw		70			ns
CS Minimum Pulse Width	tcsw		40			ns
PARALLEL TIMING (MAX4824/M	AX4825)					
Turn-On Time	ton	From rising edge of \overline{CS} , $R_L = 50\Omega$, $C_L = 50pF$			1	μs
Turn-Off Time	toff	From rising edge of \overline{CS} , $R_L = 50\Omega$, $C_L = 50pF$			3	μs
LVL Setup Time	tLS		20			ns
LVL Hold Time	tLH		0			ns
Address to CS Setup Time	tas		20			ns
Address to CS Hold Time	tah		0			ns
Rise Time (A2, A1, A0, LVL)	tscr	20% of V _{CC} to 70% of V _{CC} , C _L = 50pF (Note 6)			2	μs
Fall Time (A2, A1, A0, LVL)	tscf	20% of V _{CC} to 70% of V _{CC} , C _L = 50pF (Note 6)			2	μs
RESET Pulse Width	t _{RW}		70			ns
SET Pulse Width	tsw		70			ns
CS Minimum Pulse Width	tcsw		40			ns
POWER-SAVE TIMING (MAX4822	2/MAX4824)					
Power-Save Delay Time	tps	Variation from typical value, C _L = 100nF (Note 7)	1.6	3.2	5.4	ms
Minimum PSAVE Low Time to Power-Save Reset	tpsr			2	3.5	ms

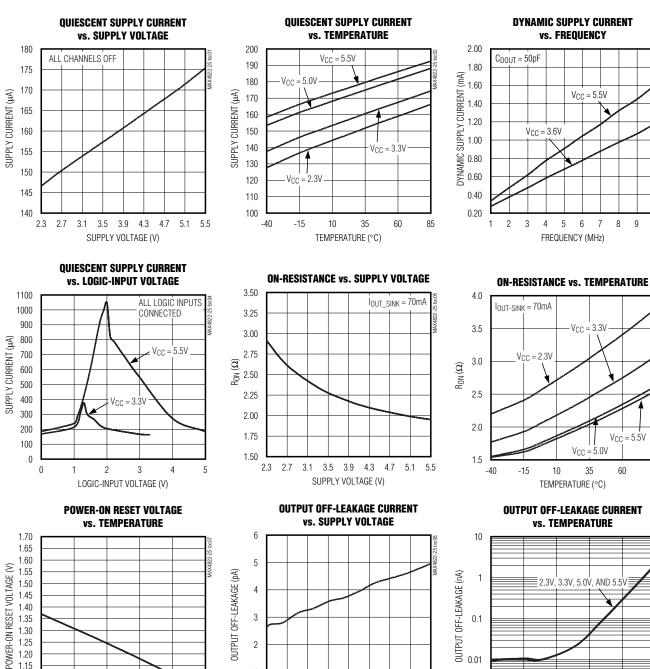
- Note 1: Specifications at -40°C are guaranteed by design and not production tested.
- Note 2: Thermal shutdown disables power save from all channels to reduce power dissipation inside the device.
- Note 3: Thermal shutdown turns off all channels.
- Note 4: The circuit can set the output voltage in power-save mode only if I_{OUT} x R_{ON} < V_{OUTP}.
- Note 5: After relay turn-off, inductive kickback can momentarily cause the OUT_ voltage to exceed V_{CC}. This is considered part of normal operation and does not damage the device.
- Note 6: Guaranteed by design.
- **Note 7:** For other capacitance values, use the equation $t_{PS} = 32 \times C$.

Typical Operating Characteristics

0.001

-40

-15


10

TEMPERATURE (°C)

35

60

 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

1

2.7 3.1

3.5 3.9 4.3

SUPPLY VOLTAGE (V)

-15

10

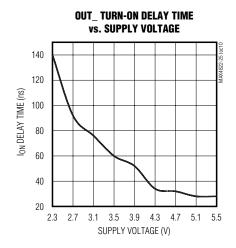
TEMPERATURE (°C)

35

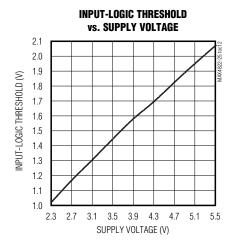
60

-40

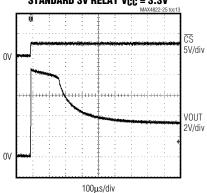
1.20 1 15

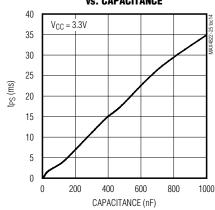

1.10 1.05 1.00

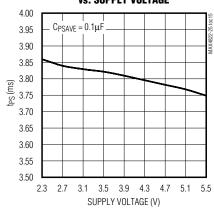

85

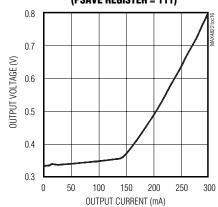

85

Typical Operating Characteristics (continued)


 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$




BACK EMF CLAMPING WITH STANDARD 3V RELAY V_{CC} = 3.3V



POWER-SAVE DELAY TIME vs. SUPPLY VOLTAGE

OUTPUT VOLTAGE vs. OUTPUT CURRENT IN POWER-SAVE MODE (PSAVE REGISTER = 111)

MAX4822/MAX4823 Pin Description

PIN						
MAX4822	MAX4823	NAME	FUNCTION			
1	1	RESET	Reset Input. Drive RESET low to clear all latches and registers (all outputs are high impedance). RESET overrides all other inputs. If RESET and SET are pulled low at the same time, then RESET takes precedence.			
2	2	CS	Chip-Select Input. Drive \overline{CS} low to select the device. When \overline{CS} is low, data at DIN is clocked into the shift register on SCLK's rising edge. Drive \overline{CS} from low to high to latte data to the registers and activate the relay outputs.			
3	3	DIN	Serial Data Input			
4	4	SCLK	Serial Clock Input			
5	5	DOUT	Serial Data Output. DOUT is the output of the shift register. DOUT can be used to daisy-chain multiple MAX4822/MAX4823 devices. The data at DOUT appears synchronous to SCLK's falling edge.			
6	6, 13	N.C.	No Connection. Not internally connected.			
7	7	GND	Ground			
8	8	OUT8	Open-Drain Output 8. Connect OUT8 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.			
9	9	OUT7	Open-Drain Output 7. Connect OUT7 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.			
10, 16	10, 16	PGND	Power Ground. PGND is a return for the output sinks. Connect PGND pins together and to GND.			
11	11	OUT6	Open-Drain Output 6. Connect OUT6 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.			
12	12	OUT5	Open-Drain Output 5. Connect OUT5 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.			
13	_	PSAVE	Power-Save Control. Connect a timing capacitor from PSAVE to ground. The capacitor value determines power-save timing as explained under the <i>Applications Information</i> section. PSAVE can also be driven externally to control power-save mode asynchronously. When asserted high, PSAVE reduces the current to all active outputs as determined by the <i>Power-Save Configuration Register</i> (see Figure 1). To disable power-save mode in all channels, drive PSAVE low for at least 3ms after the last output setting.			
14	14	OUT4	Open-Drain Output 4. Connect OUT4 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.			
15	15	OUT3	Open-Drain Output 3. Connect OUT3 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.			
17	17	OUT2	Open-Drain Output 2. Connect OUT2 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.			
18	18	OUT1	Open-Drain Output 1. Connect OUT1 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.			

MAX4822/MAX4823 Pin Description (continued)

Р	IN		
MAX4822	MAX4823	NAME	FUNCTION
19	19	V _{CC}	Input Supply Voltage. Bypass V _{CC} to GND with a 0.1µF capacitor.
20	20	SET	Set Input. Drive SET low to set all latches and registers high (all outputs are low impedance). SET overrides all parallel and serial control inputs. RESET overrides SET under all conditions.
EP	EP	EP	Exposed Pad. Connect exposed paddle to GND.

MAX4824/MAX4825 Pin Description

Р	PIN		FUNCTION		
MAX4824	MAX4825	NAME	FUNCTION		
1	1	RESET	Reset Input. Drive RESET low to clear all latches and registers (all outputs are high impedance). RESET overrides all other inputs. If RESET and SET are pulled low at the same time, then RESET takes precedence.		
2	2	CS	Chip-Select Input. Drive $\overline{\text{CS}}$ low to select the device. The $\overline{\text{CS}}$ falling edge latches the output address (A0, A1, A2). The $\overline{\text{CS}}$ rising edge latches level data (LVL).		
3	3	LVL	Level Input. LVL determines whether the selected address is switched on or off. Logichigh on LVL switches on the addressed output. A logic-low on LVL switches off the addressed output.		
4	4	A0	Digital Address 0 Input. (See Figure 3 for address mapping.)		
5	5	A1	Digital Address 1 Input. (See Figure 3 for address mapping.)		
6	6	A2	Digital Address 2 Input. (See Figure 3 for address mapping.)		
7	7	GND	Ground		
8	8	OUT8	Open-Drain Output 8. Connect OUT8 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.		
9	9	OUT7	Open-Drain Output 7. Connect OUT7 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.		
10, 16	10, 16	PGND	Power Ground. PGND is a return for the output sinks. Connect PGND pins together and to GND.		
11	11	OUT6	Open-Drain Output 6. Connect OUT6 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.		
12	12	OUT5	Open-Drain Output 5. Connect OUT5 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.		

MAX4824/MAX4825 Pin Description (continued)

Р	PIN NAME MAX4825				FUNCTION		
MAX4824			FUNCTION				
13	_	PSAVE	Power-Save Control. Connect a timing capacitor from PSAVE to ground. The capacitor value determines power-save timing as explained under the <i>Applications Information</i> section. PSAVE can also be driven externally to control power-save mode asynchronously. When PSAVE is asserted high, the current through the coils is reduced to 60% of the initial nominal current value. To disable power-save mode in all channels, drive PSAVE low for at least 3ms after last output setting.				
14	14	OUT4	Open-Drain Output 4. Connect OUT4 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.				
15	15	OUT3	Open-Drain Output 3. Connect OUT3 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.				
17	17	OUT2	Open-Drain Output 2. Connect OUT2 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.				
18	18	OUT1	Open-Drain Output 1. Connect OUT1 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.				
19	19	Vcc	Input Supply Voltage. Bypass VCC to GND with a 0.1µF capacitor.				
20	20	SET	Set Input. Drive SET low to set all latches and registers high (all outputs are low impedance). SET overrides all parallel and serial control inputs. RESET overrides SET under all conditions.				
_	13	N.C.	No Connection. Not internally connected.				
EP	EP	EP	Exposed Pad. Connect exposed paddle to ground.				

Detailed Description

Serial Interface (MAX4822/MAX4823)

Depending on the MAX4822/MAX4823 device, the serial interface can be controlled by either 8- or 16-bit words as depicted in Figures 1 and 2. The MAX4823 does not support power-save mode, so the serial interface consists of an 8-bit-only shift register for faster control.

The MAX4822 consists of a 16-bit shift register and parallel latch controlled by SCLK and $\overline{\text{CS}}$. The input to the shift register is a 16-bit word. In the MAX4822, the first 8 bits determine the register address and are followed

by 8 bits of data as depicted in Figure 1. Bit A7 corresponds to the MSB of the 8-bit register address in Figure 1, while bit D7 corresponds to the MSB of the 8 bits of data in the same Figure 1.

The MAX4823 consists of an 8-bit shift register and parallel latch controlled by SCLK and \overline{CS} . The input to the shift register is an 8-bit word. Each data bit controls one of the eight outputs, with the most significant bit (D7) corresponding to OUT8, and the least significant bit (D0) corresponding to OUT1 (see Figure 2).

ADDRESS [A7A0]	ACTIVE REGISTER
00h	Output Control Register—OUTR
01h	Power-Save Configuration Register—PS

Serial-Input Address Map

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
OUT ₈	OUT ₇	OUT ₆	OUT ₅	OUT ₄	OUT ₃	OUT ₂	OUT ₁
MSB							LSB

Output Control Register—OUT_R (Address = 00h)

Note: Setting D_N to logic 1 turns on output OUT_{N+1}. Setting D_N to logic 0, turns off OUT_{N+1}. Example: Setting D₂ = 1 turns on OUT₃.

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
X	Х	X	X	X	PS0	PS1	PS2
MSB							LSB

Power-Save Configuration Register—PS (Address= 01h)

PS0	PS1	PS2	POWER-SAVE CONFIGURATION
0	0	0	Power-save is disabled (Default Operation)
0	0	1	Power-save is enabled. V_{OUT} set to 70% of V_{CC} , typical after tps ms (see Note 1), causes I_{OUT} to be reduced to approximately 30%, typical after tps ms.
0	1	0	Power-save is enabled. V _{OUT} set to 60% of V _{CC} , typical after t _{PS} ms (see Note 1), causes I _{OUT} to be reduced to approximately 40%, typical after t _{PS} ms.
0	1	1	Power-save is enabled. V _{OUT} set to 50% of V _{CC} , typical after t _{PS} ms (see Note 1), causes I _{OUT} to be reduced to approximately 50%, typical after t _{PS} ms.
1	0	0	Power-save is enabled. V _{OUT} set to 40% of V _{CC} , typical after t _{PS} ms (see Note 1), causes I _{OUT} to be reduced to approximately 60%, typical after t _{PS} ms.
1	0	1	Power-save is enabled. V _{OUT} set to 30% of V _{CC} , typical after t _{PS} ms (see Note 1), causes I _{OUT} to be reduced to approximately 70%, typical after t _{PS} ms.
1	1	0	Power-save is enabled. Vout set to 20% of Vcc, typical after tps ms (see Note 1), causes Iout_to be reduced to approximately 80%, typical after tps ms.
1	1	1	Power-save is enabled. V _{OUT} set to 10% of V _{CC} , typical after t _{PS} ms (see Note 1), causes I _{OUT} to be reduced to approximately 90%, typical after t _{PS} ms.

Power-Save Configuration Options

Note 1: The time period tps is determined by the capacitor connected to PSAVE.

Figure 1. 16-Bit Register Map for MAX4822

When $\overline{\text{CS}}$ is low (MAX4822/MAX4823 device is selected), data at DIN is clocked into the shift register synchronously with SCLK's rising edge. Driving $\overline{\text{CS}}$ from low to high latches the data in the shift register (Figures 5 and 6).

DOUT is the output of the shift register. Data appears on DOUT synchronously with SCLK's falling edge and is identical to the data at DIN delayed by eight clock cycles for the MAX4823, or 16 clock cycles for the MAX4822. When shifting the input data, A7 is the first input bit in and out of the shift register for the MAX4822 device. D7 is the first bit in or out of the shift register for

MSB							LSB
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
OUT ₈	OUT ₇	OUT ₆	OUT ₅	OUT ₄	OUT ₃	OUT ₂	OUT ₁

Note: Setting D_N to logic 1 turns on output OUT_{N+1} . Setting D_N to logic 0 turns off output OUT_{N+1} . Example: Setting the $D_2 = 1$ turns OUT_3 on.

Figure 2. 8-Bit Register Map for MAX4823

A2	A1	A0	OUTPUT
Low	Low	Low	OUT1
Low	Low	High	OUT2
Low	High	Low	OUT3
Low	High	High	OUT4
High	Low	Low	OUT5
High	Low	High	OUT6
High	High	Low	OUT7
High	High	High	OUT8

Figure 3. Register Address Map for MAX4824/MAX4825

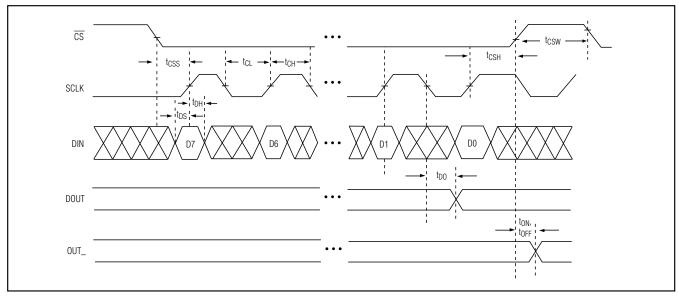


Figure 4. 3-Wire Serial-Interface Timing Diagram

the MAX4823 device. If the address A0......A7 is not 00h or 01h, then the outputs and the PSAVE configuration register are not updated. The address is stored in the shift register only.

While $\overline{\text{CS}}$ is low, the OUT_ outputs always remain in their previous state. For the MAX4823, drive $\overline{\text{CS}}$ high after 8 bits of data have been shifted in to update the output state of the MAX4823, and to further inhibit data from entering the shift register. For the MAX4822, drive $\overline{\text{CS}}$ high after 16 bits of data have been shifted in to update the output state of the MAX4822, and to further inhibit data from entering the shift register. When $\overline{\text{CS}}$ is high, transitions at DIN and SCLK have no effect on the output, and the first input bit A7 (or D7) is present at DOUT.

For the MAX4822, if the number of data bits entered while $\overline{\text{CS}}$ is low is greater or less than 16, the shift register contains only the last 16 bits, regardless of when they were entered. For the MAX4823, if the number of data bits entered while $\overline{\text{CS}}$ is low is greater or less than 8, the shift register contains only the last 8 data bits, regardless of when they were entered.

Parallel Interface (MAX4824/MAX4825)

The parallel interface consists of 3 address bits (A0, A1, A2) and one level selector bit (LVL). The address bits determine which output is updated, and the level bit determines whether the addressed output is switched on (LVL = high) or off (LVL = low). When $\overline{\text{CS}}$ is high, the address and level bits have no effect on the state of the outputs. Driving $\overline{\text{CS}}$ from low to high latches

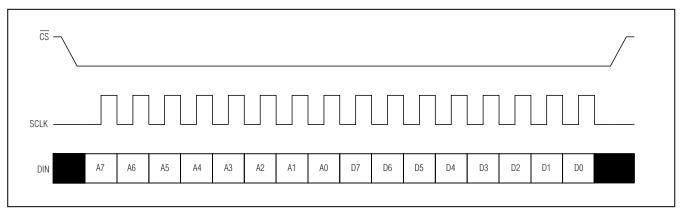


Figure 5. 3-Wire Serial-Interface Operation for MAX4822

level data to the parallel register and updates the state of the outputs. Address data entered after \overline{CS} is pulled low is not reflected in the state of the outputs following the next low-to-high transition on \overline{CS} (Figure 7).

SET/RESET Functions

The MAX4822–MAX4825 feature set and reset inputs that allow simultaneous turn-on or turn-off of all outputs using a single control line. Drive SET low to set all latches and registers to 1 and turn all outputs on. SET overrides all serial/parallel control inputs. Drive RESET low to clear all latches and registers and to turn all outputs off. RESET overrides all other inputs including SET.

Power-On Reset

The MAX4822–MAX4825 feature power-on reset. The power-on reset function causes all latches to be cleared automatically upon power-up. This ensures that all outputs come up in the off or high-impedance state.

Applications Information

Daisy Chaining

The MAX4822/MAX4823 feature a digital output (DOUT) that provides a simple way to daisy chain multiple devices. This feature allows driving large banks of relays using only a single serial interface. To daisy chain multiple devices, connect all $\overline{\text{CS}}$ inputs together, and connect the DOUT of one device to the DIN of another device (see Figure 8). During operation, a stream of serial data is shifted through the MAX4822/MAX4823 devices in series. When $\overline{\text{CS}}$ goes high, all outputs update simultaneously.

The MAX4822/MAX4823 can also be used in a slave configuration that allows individual addressing of devices. Connect all the DIN inputs together, and use

the $\overline{\text{CS}}$ input to address one device at a time. Drive $\overline{\text{CS}}$ low to select a slave and input the data into the shift register. Drive $\overline{\text{CS}}$ high to latch the data and turn on the appropriate outputs. Typically, in this configuration only one slave is addressed at a time.

Power-Save Mode

The MAX4822/MAX4824 feature a unique power-save mode where the relay current, after activation, can be reduced to a level just above the relay hold-current threshold. This mode keeps the relay activated while significantly reducing the power consumption.

In serial mode (MAX4822), choose between seven current levels ranging from 30% to 90% of the nominal current in 10% increments. The actual percentage is determined by the power-save configuration register (Figure 1).

In parallel mode (MAX4824), the power-save current is fixed at 60% of the nominal current.

Power-Save Timer

Every time there is a write operation to the device (CS transitions from low to high), the MAX4822/MAX4824 start charging the capacitor connected to PSAVE. The serial power-save implementation is such that a write operation does not change the state of channels already in power-save mode (unless the write turns the channel OFF).

After a certain time period, tps (determined by the capacitor value), the capacitor reaches a voltage threshold that sets all active outputs to power-save mode. The tps period should be made long enough to allow the relay to turn on completely. The time period tps can be adjusted by using different capacitor values

connected to PSAVE. The value tps is given by the following formula:

$$t_{PS} = 32 \times C$$

where C is in μF and t_{PS} is in ms.

For example, if the desired tps is 20ms, then the required capacitor value is $20 / 32 = 0.625 \mu F$.

Power-Save Mode Accuracy

The current through the relay is controlled by setting the voltage at OUT_ to a percentage of the VCC supply as specified under the *Electrical Characteristics* and in the register description. The current through the relay (IOUT) depends on the switch on-resistance, RON, in addition to the relay resistance RR according to the following relation:

$$IOUT = VCC / (RON + RR)$$

The power-save, current-setting IPS depends on the fraction α of the supply voltage VCC that is set by the loop depending on the following relation:

$$I_{PS} = V_{CC} - (\alpha \times V_{CC}) / R_{R}$$

Therefore:

$$IPS / IOUT = (1 - \alpha) \times (1 + RON / RR)$$

This relation shows how the fraction of reduction in the current depends on the switch on-resistance, as well as from the accuracy of the voltage setting (α) . The higher the RON with respect to RR, the higher the inaccuracy. This is particularly true at low voltage when the relay resistance is low (less than $40\Omega)$ and the switch can account for up to 10% of the total resistance. In addition, when the supply-voltage setting (α) is low (10% or 20%) and the supply voltage (VCC) is low, the voltage drop across the switch (IOUT x RON) may already exceed, or may be very close to, the desired voltage-setting value.

Daisy Chaining and Power-Save Mode

In a normal configuration using the power-save feature, several MAX4822s can be daisy chained as shown in Figure 9. For each MAX4822, the power-save timing tpD (time it takes to reduce the relay current once the relay is actuated) is controlled by the capacitor connected to PSAVE.

An alternative configuration that eliminates the PSAVE capacitors uses a common PSAVE control line driven by an open-drain n-channel MOSFET (Figure 10). In this configuration, the PSAVE inputs are connected together to asynchronously control the power-save timing for all the MAX4822s in the chain. The $\mu C/\mu P$ drives the n-channel MOSFET low for the duration of a write cycle to the SPI chain, plus some delay time to allow the relays to close.

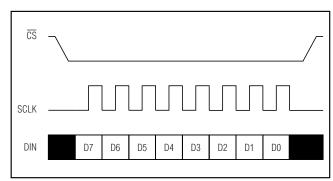


Figure 6. 3-Wire Serial-Interface Operation for the MAX4823

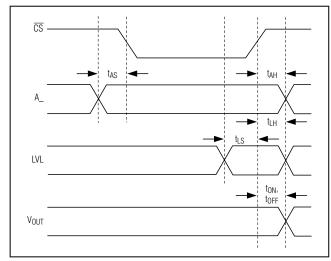


Figure 7. Parallel-Interface Timing Diagram

(This time is typically specified in the relay data sheet.) Once this delay time has elapsed, the n-channel MOSFET is turned off, allowing the MAX4822's internal 35µA pullup current to raise PSAVE to a logic-high level, activating the power-save mode in all active outputs.

MOSFET Selection

In the daisy-chain configuration of Figure 10, the n-channel MOSFET drives PSAVE low. When the n-channel MOSFET is turned off, PSAVE is pulled high by an internal 35µA pullup in each MAX4822, and the power-save mode is enabled. Because of the paralleled PSAVE pullup currents, the required size of the n-channel MOSFET depends upon the number of MAX4822 devices in the chain. Determine the size of the n-channel MOSFET by the following relation:

Ron < 1428 / N

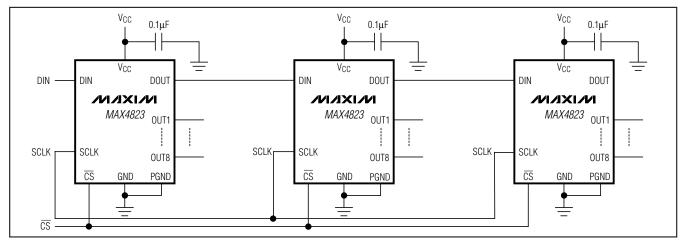


Figure 8. Daisy-Chain Configuration

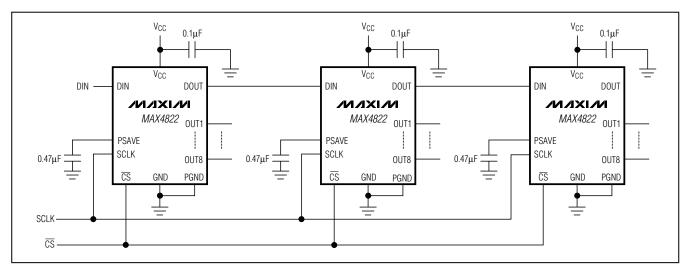


Figure 9. Daisy-Chained MAX4822s with a Capacitor Connected to PSAVE

where N is the total number of MAX4822 devices in a single chain, and R_{ON} is the on-resistance of the n-channel MOSFET in $\Omega s.$

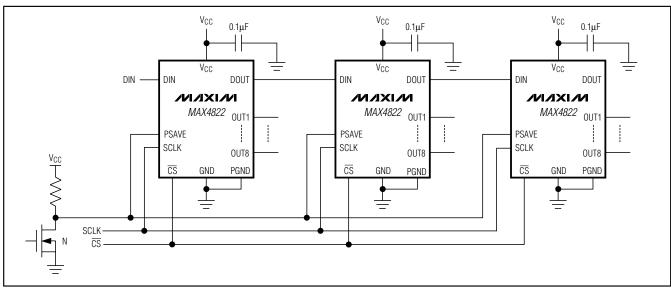
For example, if N = 10:

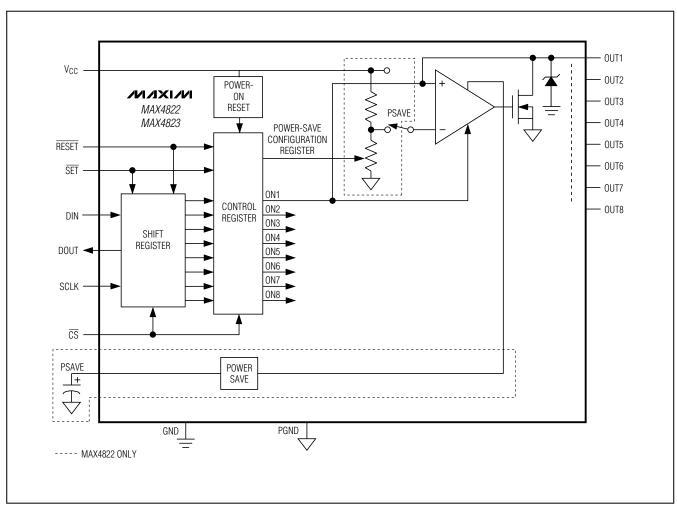
$$Ron < 142\Omega$$

An n-channel MOSFET with RoN less than 142Ω is required for a daisy chain of 10 MAX4822 devices.

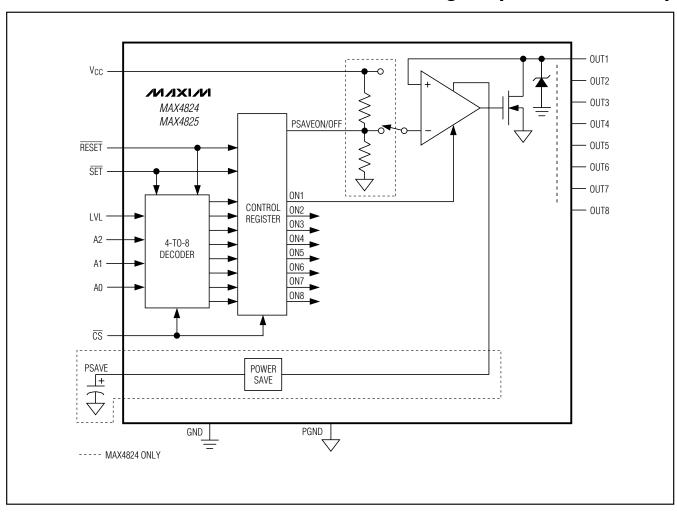
Inductive Kickback Protection with Fast Recovery Time

The MAX4822–MAX4825 feature built-in inductive kick-back protection to reduce the voltage spike on OUT_generated by a relay's coil inductance when the output is suddenly switched off. An internal Zener clamp allows the inductor current to flow back to ground. The Zener configuration significantly reduces the recovery time (time it takes to turn off the relay) when compared to protection configurations with just one diode across the coil.

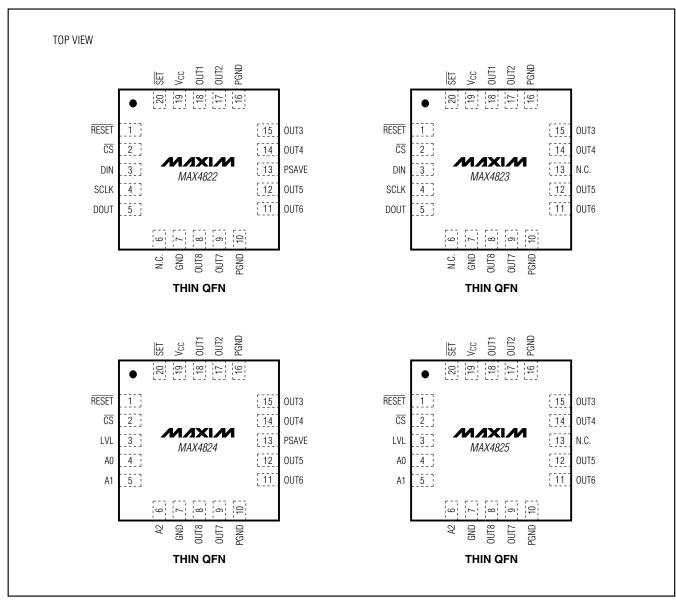



Figure 10. Daisy-Chaining MAX4822s with a PSAVE Connected to an n-Channel MOSFET

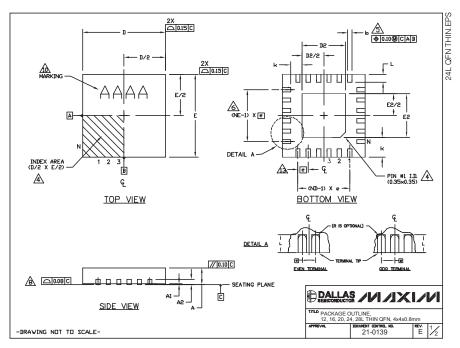
_Chip Information


TRANSISTOR COUNT: 5799

PROCESS: BiCMOS


MAX4822/MAX4823 Functional Diagram (Serial Interface)

MAX4824/MAX4825 Functional Diagram (Parallel Interface)



Pin Configurations

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

				COMM	10N	DIME	IIZN	ZNE									E	XPOS	SED	PAD	VAR	ITAI	DNS	
PKG	12	L 4×	4		L 4x		20	L 4×	4	2,	4L 4×	(4	28	8L 4×	(4	1	PKG.		135			E5		DOWN BONDS
REF.	MIN.	NDM.	MAX.	MIN	NOM.	MAX.	MÍN.	NOM.	MAX.	MIN.	NDN.	MAX.	MIN.	NDM.	MAX.	Ιl	PKG. CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	ALLOVE
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	[T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
A1		0.02	0.05	0.0	20.0	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	H	T1244-4	1.95	2.10	2.25	1.95	510	2.25	NO
A2	0	.20 RE	F	0.	20 RE	F	0.	20 RE	F	٥	20 RE	F	0	.20 RE	F	IJ	T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25	H	T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	H	T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
Ε	3.90		4.10		4.00	4.10		4.00	4.10	3.90	4.00	4.10	3.90		4.10	H	T2044-3	1.95	2.10	2.25	1.95	510	2.25	NO
6		.80 BS		_	65 BS			50 BS			.50 BS	_	_	0.40 BS		H	T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	H	T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	YES
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	0.30	0.40	0.50	H	T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	NO
N	_	12			16			20			24		_	28		Įι	T2844-1	2.50	2.60	2.70	2.50	2.60	2.70	ND
ND	_	3			4		_	5			6		_	7										
NE	ı	3			4			5			6		_	7										
NOTE	S: DIMENS			ERANCI			TO AS		4.5N-	1994.	WGGD-	-2		WGGE										
1. 2. 3.	ES: DIMENSI ALL DIN N IS TH THE TEI JESD 9: THE ZO	ioning Mension He tot Rminal 5—1 si Ne ind	NS ARE AL NUI . #1 IE PP012 DICATEE	LERANCI IN MI MBER O ENTIFIE 2. DETAI). THE	NG CC LUMETS IF TER R AND LS OF TERMIN	ERS. AI MINALS TERMI TERMII AL #1	TO AS VIGLES NAL NIL VIAL #1	SME Y1 ARE IN JMBERII IDENTII	4.5M— DEGRI NG CON FIER AF AY BE	1994. EES. WENTK RE OPT ETTHER	ON SHA IONAL,	ALL CO BUT M OLD OR	NFORM UST BE MARKI	TO E LOCAT ED FEA	TURE.		1							
NOTE 1. 2. 3. 4.	ES: DIMENSI ALL DIN N IS TH THE TEI JESD 9: THE ZO DIMENSI FROM T	IONING MENSION HE TOT RMINAL 5-1 SE NE INC ION B TERMINA	NS ARE AL NUI PP-012 DICATED APPLIE AL TIP	ERANCI IN MI MBER O ENTIFIE 2. DETA 3. THE	NG CC LUMETS IF TERS R AND LS OF TERMIN	ERS. AI MINALS TERMI TERMII AL #1 ZED TE	TO AS NGLES NAL NL NAL #1 IDENTI	SME Y1 ARE IN IMBERIN IDENTI FIER M.	4.5M— DEGRI NG CON FIER AF AY BE	1994. EES. WENTK RE OPT EITHER	ON SHA TONAL, R A MO	ALL CO BUT M DLD OR EEN O.	NFORM UST BE MARKI 25 mm	TO E LOCAT ED FEA	TURE.		,							
NOTE 1. 2. 3. 4.	ES: DIMENSI ALL DIN N IS THE THE TEI JESD 9: THE ZO DIMENSI FROM 1	IONING MENSION HE TOT RMINAL 5-1 SE INE INC ION IS TERMINA	NS ARE AL NUI PP-01: DICATED APPLIE AL TIP.	LERANCI E IN MIL MESER OF PENTIFIE E. DETAI L. THE ' S TO M	NG CC LUMETI IF TER R AND LS OF TERMIN IETALLI NUMB	ERS. AMMINALS TERMINALS TERMINAL #1 ZED TE ER OF	TO AS VIGLES NAL NIL IDENTI RMINAL	SME Y1 ARE IN IMBERIN IDENTII FIER M AND	4.5M— DEGRI NG COP FIER AF AY BIE IS MEA	1994. EES. WENTK RE OPT EITHER	ON SHA TONAL, R A MO	ALL CO BUT M DLD OR EEN O.	NFORM UST BE MARKI 25 mm	TO E LOCAT ED FEA	TURE.		ı							
NOTE 1. 2. 3. 4. 5.	ES: DIMENSI ALL DIN N IS THE THE TEI JESD 9: THE ZO DIMENSI FROM 1 ND AND	IONING MENSION HE TOT RMINAL 5-1 SE NE INC ION 6 TERMINAL	NS ARE AL NUI PP-012 DICATED APPLIE AL TIP. REFER	LERANCI E IN MII MISER O MENTIFIE DETAIL TO THE DESSIBLE	NG CC LUMETS IF TER R AND LS OF TERMIN TETALLI NUMB	ERS. AMMINALS TERMIN TE	TO AS VGLES NAL NI VAL #1 IDENTI TRMINAL	SME Y1 ARE IN IMBERII IDENTI FIER M. AND VALS O	4.5M— DEGRI NG CON FIER AF AY BIE IS MEA	1994. EES. WENTK EE OPT EITHER SURED H D A	ON SHA TONAL, RAMO BETWI	ALL CO BUT M OLD OR EEN O.:	NFORM UST BE MARKI 25 mm	TO E LOCAT ED FEA 1 AND	TURE.		ı							
NOTE 1. 2. 3. 4. 5. 7. 6.	ES: DIMENSI ALL DIN N IS THE TEI JESD 9: THE ZO DIMENSI FROM T ND AND DEPOPL	IONING MENSION HE TOT RMINAL 5-1 SE NE INC ION 6 TERMINAL O NE FE JUATION JUATION JUATION	NS ARE AL NUI PP-012 DICATED APPLIE AL TIP. SEFER I IS PO APPLIE	LERANCI E IN MII MBER O PENTIFIE D. THE S TO M TO THE DSSIBLE S TO T	NG CC LUMETS IF TERS R AND LS OF TERMIN IETALLI NUMB IN A HE EX	ERS. AMMINALS TERMINALS TERMINAL #1 ZED TE ER OF SYMME POSED	TO AS NOL NIL IDENTI TERMINAL TERMINAL HEAT	SME Y1 ARE IN IMBERIN IDENTII FIER M. AND VALS O FASHK	4.5M— I DEGRI NG CON FIER AF AY BIE IS MEA	1994. EES. WENTK RE OPT EITHER SURED H D AI	ON SHA TONAL, R A MC BETWI ND E S	ALL CO BUT M OLD OR EEN O.: SIDE RI	NFORM UST BE MARKI 25 mm ESPECTI	TO E LOCAT ED FEA 1 AND TVELY.	TURE.									
NOTE 1. 2. 3. 4. 5. 7. 6. 9.	ES: DIMENSI ALL DIN N IS THE TEI JESD 9: THE ZO DIMENSI FROM 1 ND AND DEPOPU	IONING MENSION HE TOT RMINAL 5-1 SE NE INC ION 6 TERMINA O NE FE JULATION J	NS ARE AL NUI PP-012 DICATED APPLIE AL TIP. REFER I IS PO APPLIE FORMS	LERANCI E IN MII MISER OF MITTELE S. THE S. TO IN TO THE S. TO JE TO JE	NG CC LUMETS IF TERS R AND LS OF TERMIN IETALLI NUMB IN A HE EXI DEC M	ERS. AMMINALS TERMINITE	TO AS NOL NU INAL #1 IDENTI TERMINAL TERMINAL HEAT: EXCEPT	SME Y1 ARE IN IMBERIN IDENTII FIER M. AND VALS OFFASHK SINK S	4.5M— I DEGRI NG CON FIER AF AY BIE IS MEA IN EACH IN EACH IN LUG AS T2444-	1994. EES. WENTK RE OPT EITHER SURED H D AI	ON SHA TONAL, R A MC BETWI ND E S	ALL CO BUT M OLD OR EEN O.: SIDE RI	NFORM UST BE MARKI 25 mm ESPECTI	TO E LOCAT ED FEA 1 AND TVELY.	TURE.		ı							
NOTE 1. 2. 3. 4. 5. 6. 7. 6. 9. M	ES: DIMENSI ALL DIN N IS THE TEI JESD 9: THE ZO DIMENSI FROM 1 ND AND DEPOPL COPLAN DRAWIN JARKING	IONING MENSION HE TOT RMINAL S-1 IN ION IS IERMINAL O NE FI JUATION JUATION JUATION ION ION JUATION JU	NS ARE AL NUI PP-012 DICATED APPLIE AL TIP. REFER I IS PO APPLIE FORMS IR PAC	LERANCI E IN MII MISIER OF MENTIFIE S TO M TO THE DSSIBLE S TO JE KAGE O	NG CC LUMETS F TERMIN IETALLI NUMB IN A HE EXI DEC M	ERS. AMMINALS TERMINAL #1 ZED TE ER OF SYMME POSED 0220, ITION F	TO AS VIGLES NAL NIL IDENTI ERMINAL TERMIN	SME Y1 ARE IN IMBERIN IDENTII FIER M. AND VALS OF FASHK SINK S	4.5M— I DEGRI NG CON FIER AF AY BIE IS MEA IN EACH IN EACH IN LUG AS T2444-	1994. EES. WENTK RE OPT EITHER SURED H D AI	ON SHA TONAL, R A MC BETWI ND E S	ALL CO BUT M OLD OR EEN O.: SIDE RI	NFORM UST BE MARKI 25 mm ESPECTI	TO E LOCAT ED FEA 1 AND TVELY.	TURE.									
NOTE 1. 2. 3. 4. 5. 7. 6. 9. 11. C	ES: DIMENSI ALL DIN N IS THE TEI JESD 9: THE ZO DIMENSI FROM 1 ND AND DEPOPL COPLAN DRAWIN JARKING	IONING MENSION HE TOT S-1 ST NE INC ION 6 TERMINAL O NE FO JULATION JULATIO	NS ARE AL NUI PP-012 DICATED APPLIE AL TIP. REFER I IS PO APPLIE FORMS IR PAC HALL I	LERANCE IN MILE OF THE COSSIBLE STO THE TO JEE COSSIBLE STO TEXT	NG CC LUMETE IF TER IF AND LS OF TERMIN IETALLI NUMB IN A HE EXI DEC M	ERS. AMMINALS TERMITERMITERMITERMITERMITERMITERMITERMI	TO AS VIGLES NAL NIL IDENTI ERMINAL TERMIN	SME Y1 ARE IN IMBERIN IDENTII FIER M. AND VALS OF FASHK SINK S	4.5M— I DEGRI NG CON FIER AF AY BIE IS MEA IN EACH IN EACH IN LUG AS T2444-	1994. EES. WENTK RE OPT EITHER SURED H D AI	ON SHA TONAL, R A MC BETWI ND E S	ALL CO BUT M OLD OR EEN O.: SIDE RI	NFORM UST BE MARKI 25 mm ESPECTI	TO E LOCAT ED FEA 1 AND TVELY.	TURE.		,							
NOTE 1. 2. 3. 4. 7. 6. 9. 11. C	ES: DIMENSI ALL DIN N IS THE TEI JESD 9: THE ZO DIMENSI FROM 1 ND AND DEPOPL COPLAN DRAWIN JARKING	IONING MENSION HE TOT RMINAL 5-1 SF NE INC ION 6 TERMINA O NE F JLATION JARTY IG CON RIFT SHAL E SHAL	NS ARE AL NUI PP-012 DICATED APPLIE AL TIP. SEFER I IS PO APPLIE FORMS IR PAC HALL I L NOT	LERANCE IN MILE OF THE COSSIBLE STO THE TO JEE KAGE OF EXCEPTION AND TO SECOND TO JEE KAGE OF EXCEPTION AND THE COSSIBLE STO TO JEE KAGE OF EXCEPTION AND THE COST EXCEPTION AND THE CO	NG CC LLIMETH F TERM F AND IS OF TERMIN IN A HE EX DEC M RIENTA CEED (0.1	ERS. AMMINALS TERMINALS TERMINAL #1 ZED TE ER OF SYMME POSED 0220, TION F 0.08mm	TO AS VIGLES NAL NI VIAL #1 IDENTI TERMINAL TERMINAL HEAT: EXCEPT	SME YI ARE IN IDENTI IDENTI FIER M. AND I VALS O FASHK SINK S I FOR	4.5M— I DEGRI NG CON FIER AF AY BE IS MEA IN EACH ON. LUG AS T2444- ILY.	1994. EES. WENTIK EE OPT EITHER SURED H D AI	ON SHA IONAL, R A MO BETWI ND E S AS TR	ALL CO BUT M OLD OR EEN O.: SIDE RI HE TER	NFORM UST BE MARKI 25 mm ESPECTI MINALS 12844-	TO E LOCAT ED FEA I AND IVELY.	TURE.			⇒ D.A		100	48 48			1/1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.