

General Description

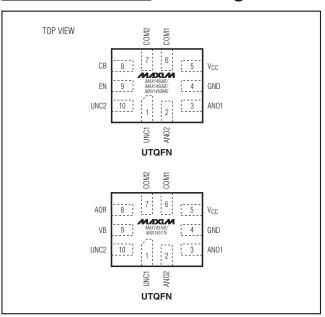
The MAX14508E-MAX14511E/MAX14509AE high-ESDprotected DPDT switches multiplex Hi-Speed (480Mbps) USB and analog signals such as AC-coupled audio or video. These devices combine the low on-capacitance (CON) and low on-resistance (RON) necessary for highperformance switching applications in portable electronics, and include an internal negative supply to pass audio signals that swing below ground (down to VCC -5.0V). The MAX14508E-MAX14511E/MAX14509AE also handle USB low-/full-speed signaling and operate from a +2.7V to +5.0V supply.

The MAX14508E-MAX14511E feature +5.5V fault protection on COM1 and COM2, making these devices compliant with the USB 2.0 fault-protection specification. The MAX14510E/MAX14511E feature a VBUS detection input (VB) to automatically switch to the USB signal path upon detection of a valid VBUS signal. The MAX14508E/ MAX14510E feature internal shunt resistors on the audio path to reduce clicks and pops heard at the output. The MAX14508E/MAX14509E/MAX14509AE have an enable input (EN) to reduce supply current and set all channels to high impedance when driven low.

The MAX14508E-MAX14511E/MAX14509AE are available in a space-saving, 10-pin, 1.4mm x 1.8mm UTQFN package, and operate over the -40°C to +85°C temperature range.

Applications

Cell Phones MP3 Players Notebook Computers


PDAs

Typical Operating Circuit appears at end of data sheet.

Features

- ♦ Single +2.7V to +5.0V Supply Voltage
- ♦ Low 12µA Supply Current
- ◆ -3dB Bandwidth: 950MHz (typ)
- ♦ Low 2.4Ω (typ) On-Resistance
- ♦ Low 20mΩ (typ) Ron Flatness
- ♦ THD+N: 0.05%
- COM Analog Inputs Fault Protected Against Shorts to +5.5V (MAX14508E/MAX14509E/MAX14510E/ MAX14511E)
- ♦ Internal Shunt Resistors for Click-and-Pop Reduction (MAX14508E/MAX14510E)
- **♦ VBUS Detection for Automatic Switch Path** Selection (MAX14510E/MAX14511E)
- ♦ Space-Saving Package: 10-Pin, 1.4mm x 1.8mm UTQFN

Pin Configurations

Ordering Information/Selector Guide

PART	PIN-PACKAGE	VBUS DETECTION/ ENABLE LINE	FAULT PROTECTION	SHUNT RESISTORS	TOP MARK
MAX14508EEVB+	10 Ultra-Thin QFN	Enable	Yes	Yes	AAH
MAX14509E EVB+*	10 Ultra-Thin QFN	Enable	Yes	No	AAI
MAX14509AEEVB+	10 Ultra-Thin QFN	Enable	No	No	AAL
MAX14510EEVB+	10 Ultra-Thin QFN	VBUS	Yes	Yes	AAJ
MAX14511E EVB+*	10 Ultra-Thin QFN	VBUS	Yes	No	AAK

Note: All devices operate over the -40°C to +85°C temperature range.

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

^{*}Future product—contact factory for availability.

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)	
V _{CC} , ČB, EN, VB, AOR	0.3V to +6.0V
$COM_{-}(V_{EN} > V_{IH}) (Note 1)$	(V _{CC} - 5.0V) to +6.0V
COM_ (V _{EN} < V _{IL})	0.3V to +6.0V
ANO_ (V _{EN} > V _{IH})	(V_{CC} - 5.0V) to (V_{CC} + 0.3V)
	0.3V to (V _{CC} + 0.3V)
UNC	0.3V to (V _{CC} + 0.3V)
Continuous Current into Any Te	rminal±100mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$
10-Pin UTOFN (derate 6.9m)	$V/^{\circ}C$ above $+70^{\circ}C$) 559mW

Junction-to-Case Thermal Resistance	e (θ _{JC}) (Note 2)
10-Pin UTQFN	20.1°C/W
Junction-to-Ambient Thermal Resista	nce (θ _{JA}) (Note 2)
10-Pin UTQFN	143.1°C/W
Operating Temperature Range	40°C to +85°C
Junction Temperature Range	40°C to +150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

- Note 1: Limits are only for the MAX14508E/MAX14509E/MAX14510E/MAX14511E. For the MAX14509AE ($V_{CC} \ge 2.7V$), the limits are from (V_{CC} 5.0V) to min of 6.0V or (V_{CC} + 1.0V).
- **Note 2:** Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.7V \text{ to } +5.0V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.0V, T_A = +25^{\circ}\text{C}.)$ (Note 3)

PARAMETER	SYMBOL		CONDITIONS		TYP	MAX	UNITS
Operating Power-Supply	Vcc			2.7		5.0	V
			MAX14508E/MAX14509E/ MAX14509AE, V _{EN} = 0V			1	
		V _{CC} = 3.3V	$(V_{EN} = V_{CC}, V_{CB} = 0V)$ or $(V_{AOR} = 0V, V_{VB} = V_{VBDET})$		6	12	
Supply Current	laa		$(V_{EN} = V_{CC}, V_{CB} = V_{CC})$ or $(V_{AOR} = V_{CC}, V_{VB} = 0V)$		6	12	
Supply Current	Icc		MAX14508E/MAX14509E/ MAX14509AE, V _{EN} = 0V			1	μΑ
		V _{CC} = 5.0V	$(V_{EN} = V_{CC}, V_{CB} = 0V)$ or $(V_{AOR} = 0V, V_{VB} > V_{VBDET})$		6	12	V μA V μs ν
			$(V_{EN} = V_{CC}, V_{CB} = V_{CC})$ or $(V_{AOR} = V_{CC}, V_{VB} = 0V)$		6	12	
Power-Supply Rejection Ratio	PSRR	f = 10kHz, V _{CC}	$t = 3.0 \pm 0.3 \text{V}, R_{COM} = 50\Omega$		60		dB
COM Overvoltage Detect Threshold	VFP	MAX14511E, V	MAX14508E/MAX14509E/MAX14510E/ MAX14511E, V _{CC} = +2.7V to +3.3V, Figure 1 (Note 4)			V _{CC} + 1.6	V
Fault-Protection Response Time	tFP	$V_{COM} = 1V \text{ to } 5$ $R_{ANO} = 1k\Omega$	V_{COM} = 1V to 5V step, V_{CC} = 3.0V, R_{UNC} + R_{ANO} = 1k Ω		1.3	5.0	μs
Fault-Protection Recovery Time	tFPR	$V_{COM} = 5V \text{ to } 1$ $R_{ANO} = 1k\Omega$	1V step, V _{CC} = 3.0V, R _{UNC} +		2		μs
	V _{UNC} _			0		Vcc	
Analog Signal Range	V _{ANO_} , V _{COM_}	V _{EN} > V _{IH}		V _{CC} - 5.0		Vcc	V
	V COIVI_	V _{EN} < V _{IL}		0		V _C C	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.7 \text{V to } +5.0 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.0 \text{V}, T_A = +25 ^{\circ}\text{C}.)$ (Note 2)

PARAMETER	SYMBOL	C	ONDITIONS	MIN	TYP	MAX	UNITS	
ANO_ On-Resistance	Ron(ano_)	V _{CC} = 3.0V; V _{ANO} = -1.5V, +1.5V; I _{COM} = 10mA			2.4	5	Ω	
		V _{CC} = 3.0V; V _{UNC}	_ = 0V, V _{CC} ; I _{COM} _ = 10mA		2.4	5		
UNC_ On-Resistance	Ron(unc_)	MAX14509AE, V _C I _{COM} _ = 10mA		2.4	5	Ω		
ANO_ On-Resistance Match Between Channels	ΔR _{ON(ANO_)}	V _{CC} = 3.0V, V _{ANO} (Notes 5, 6)			0.2	Ω		
UNC_ On-Resistance Match Between Channels	ΔRON(UNC_)	V _{CC} = 3.0V, V _{UNC} (Notes 5, 6)	_ = 0V, I _{COM} _ = 10mA			0.2	Ω	
ANO_ On-Resistance Flatness	RFLAT(ANO_)	V _{CC} = 3.0V, I _{COM} +1.5V (Note 7)	_ = 10mA, V _{ANO} _ = -1.5V to		0.03	0.25	Ω	
UNC_ On-Resistance Flatness	RFLAT(UNC_)	V _{CC} = 3.0V, I _{COM} _ V _{CC} (Note 7)	= 10mA, V _{UNC} _ = 0V to		0.05	0.5	Ω	
Shunt Switch Resistance	RsH	MAX14508E/MAX	14510E, I _{ANO} _ = 10mA		100	200	Ω	
AOR Pulldown Resistance	Raor		_	250		1200	kΩ	
UNC_ Off-Leakage Current	lunc_(OFF)	$V_{CC} = 3.0V; V_{UNC}$ $V_{COM} = -1.5V, +2$ MAX14508E/MAX	-10		+10	nA		
ANO_ Off-Leakage Current	IANO_(OFF)	MAX14509E/MAX VCC = 3.0V; VANO +2.5V	-10		+10	nA		
			14509E/MAX14509AE, : 0V, V _{COM} _ = 3.6V, 0V	-10		+10	μΑ	
COM_ Off-Leakage Current	ICOM_(OFF)	MAX14508E/MAX14509E/MAX14509AE, V _{CC} = 3.3V, V _{EN} = 0V, V _{COM} = 0V, V _{UNC} = V _{ANO} = 0V		-10		+10	nA	
		V _{CC} = 0V, V _{COM} = 3.6V, V _{UNC} = V _{ANO} = 0V		10		600	μΑ	
COM On Leglage Compart	1	USB mode	VCC = 3.0V; V _{ANO} = 0V, 2.5V; unconnected; V _{COM} = 0V, 2.5V	-200		+200	A	
COM_ On-Leakage Current	ICOM_(ON)	Audio mode	V _{CC} = 3.0V; V _{UNC} = 0V, 2.5V; unconnected; V _{COM} = -1.5V, +2.5V	-200		+200	nA	
Turn-On Time	ton	ANO_ to COM_, VCC = 3.0V	$(V_{ANO} = 1.5V, R_L = 50\Omega,$ $V_{EN} = V_{CC}, V_{CB} = 0V \text{ to}$ $V_{CC}) \text{ or } (V_{AOR} = 0V, V_{VB}$ $= 5.0V \text{ to } 0V) \text{ or } (V_{VB} = 5.0V, V_{AOR} = 0V \text{ to } V_{CC})$		14	60	μs	
(Figure 2)	UN	UNC_ to COM_, V _{CC} = 3.0V	(V _{UNC} __ = 1.5V, R _L = 50Ω, V _{EN} = V _{CC} , V _{CB} = V _{CC} to 0V) or (V _{AOR} = 0V, V _{VB} = 0V to 5.0V)		14	60		

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.7 \text{V to } +5.0 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.0 \text{V}, T_A = +25 ^{\circ}\text{C}.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Turn-Off Time (Figure 2)	toff -	ANO_ from COM_, VCC = 3.0V	$ \begin{aligned} &(\text{VaNO}_=1.5\text{V},\text{R}_\text{L}=50\Omega,\\ &\text{VEN}=\text{VCC},\text{VCB}=\text{VCC}\text{ to}\\ &\text{0V)}\text{ or }(\text{VAOR}=0\text{V},\text{VVB}=\\ &\text{0V to 5.0V)}\text{ or }(\text{VVB}=5.0\text{V},\\ &\text{VAOR}=\text{VCC}\text{ to 0V}) \end{aligned} $		1.4	5	
		UNC_ from COM_, VCC = 3.0V	$ \begin{aligned} &(V_{UNC} = 1.5V, R_L = 50\Omega, \\ &V_{EN} = V_{CC}, V_{CB} = 0V \text{ to} \\ &V_{CC}) \text{ or } (V_{AOR} = 0V, V_{VB} = \\ &5.0V \text{ to } 0V \text{ or } V_{VB} = 5.0V, \\ &V_{AOR} = 0V \text{ to } V_{CC}) \end{aligned} $		0.7	5	- µs
Break-Before-Make Time Delay	t _D	$R_L = 50\Omega$			13.5		μs
Output Skew Same Switch	t _{SK(P)}	Figure 3 (Note 5)		40		ps
Output Skew Between Switches	tsk(0)	Figure 3 (Note 5)		40		ps
ANO_ Off-Capacitance	Cano_(OFF)	V _{COM} _ = 0.5V _P - (Note 5)	V _{COM} _ = 0.5V _{P-P} , DC bias = 0V, f = 1MHz (Note 5)		8		рF
UNC_ Off-Capacitance	CUNC_(OFF)	V _{COM} _ = 0.5V _{P-P} , DC bias = 0V, f = 240MHz (Note 5)			3.3		рF
On Onneithern (Neth 5)	0		UNC_to COM_, V _{COM} _ = 0.5V _{P-P} , DC bias = 0V, f = 240MHz		8		рF
On-Capacitance (Note 5) CCOM(ANO_to COM_, V _{COM} _ = 0.5V _{P-P} , DC bias = 0V, f = 1MHz			8		рF
AC PERFORMANCE	•						•
ANO3dB Bandwidth	BWA _{NO} _	$R_S = R_L = 50\Omega$,	V _{ANO_} = 0dBm, Figure 4		950		MHz
UNC3dB Bandwidth	BWA _{NC} _	$R_S = R_L = 50\Omega$,	V _{UNC} _ = 0dBm, Figure 4		950		MHz
Off-Isolation	V _{ISO}	f = 100kHz, V _{CC} Figure 4	$M_L = 1V_{RMS}$, $R_S = R_L = 50\Omega$,		-65		dB
Crosstalk	Vст		f = 100kHz, V_{COM} = 1 V_{RMS} , $R_S = R_L = 50\Omega$, Figure 4 (Note 8)		-70		dB
Total Harmonic Distortion Plus Noise	THD+N	ANO_ to COM_, f = 20Hz to 20kHz, $V_{COM_} = 0.5V_{P-P}$, DC bias = 0V, $R_L = 600\Omega$			0.05		%
LOGIC INPUT	•						•
Input Logic-High	V _{IH}			1.6			V
Input Logic-Low	VIL					0.4	V
Input Leakage Current	IIN	MAX14508E/MA V _{CB} = 0V or V _{CC}	X14509E/MAX14509AE,	-1		+1	μА

NIXIN

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.7 \text{V to } +5.0 \text{V}, T_A = -40 ^{\circ} \text{C to } +85 ^{\circ} \text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.0 \text{V}, T_A = +25 ^{\circ} \text{C}.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ESD PROTECTION						
All Pins		Human Body Model		±2		kV
COM1, COM2		Human Body Model		±15		kV

- Note 3: All devices are 100% production tested at $T_A = +25$ °C. All temperature limits are guaranteed by design.
- Note 4: The switch turns off for voltages above VFP, protecting downstream circuits in case of a fault condition.
- Note 5: Guaranteed by design.
- **Note 6:** $\Delta R_{ON(MAX)} = ABS(R_{ON(CH1)} R_{ON(CH2)})$
- Note 7: Flatness is defined as the difference between the maximum and minimum value of on-resistance, as measured over specified analog signal ranges.
- Note 8: Between two switches.

Test Circuits/Timing Diagrams

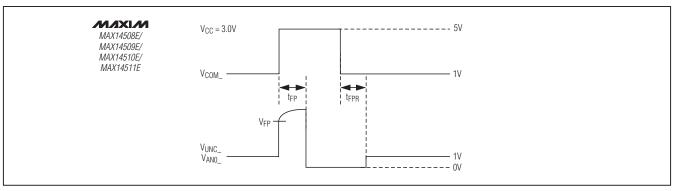


Figure 1. Fault Protection

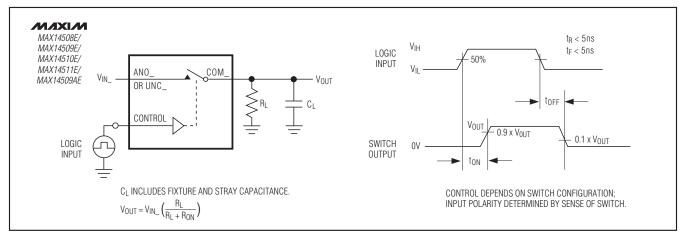


Figure 2. Switching Time

Test Circuits/Timing Diagrams (continued)

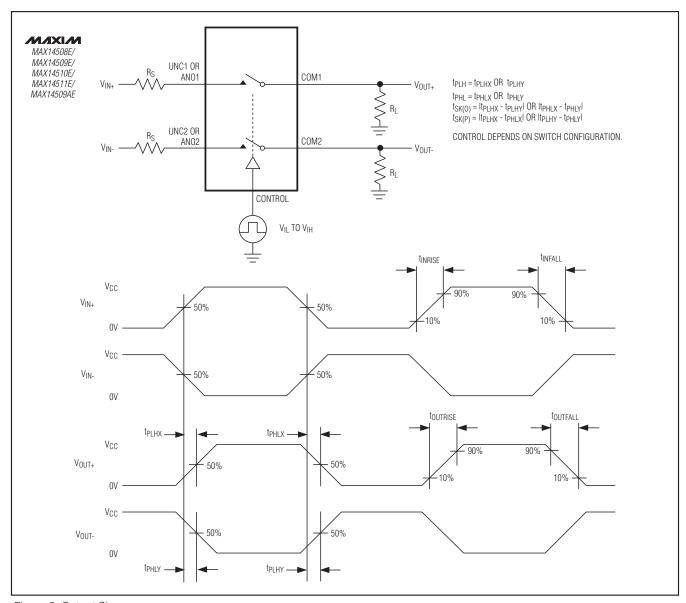


Figure 3. Output Skew

Test Circuits/Timing Diagrams (continued)

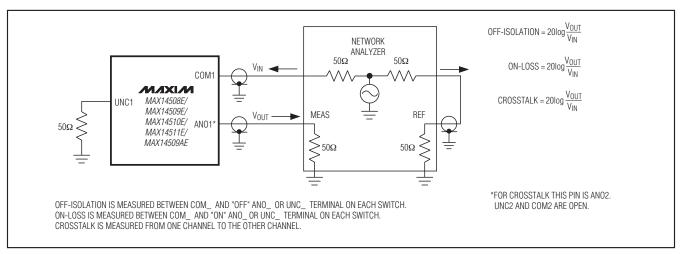
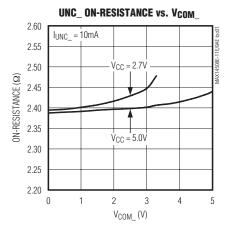
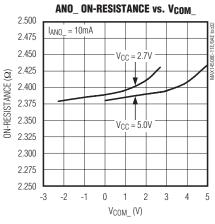
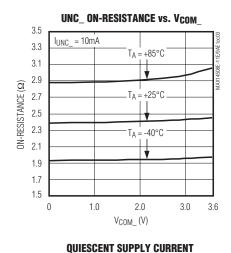
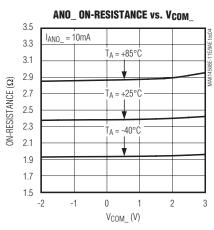
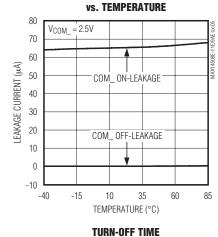
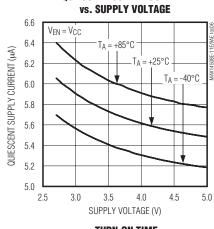




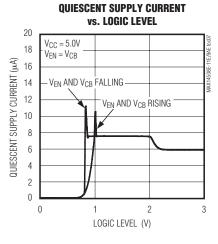
Figure 4. On-Loss, Off-Isolation, and Crosstalk

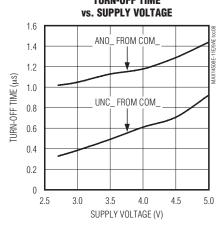

Typical Operating Characteristics

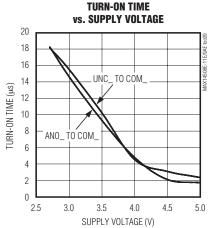

 $(V_{CC} = 3.0V, T_A = +25^{\circ}C, unless otherwise noted.)$

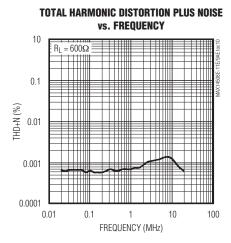


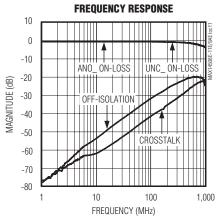


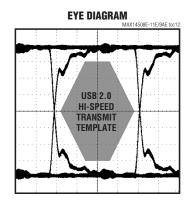

COM LEAKAGE CURRENT





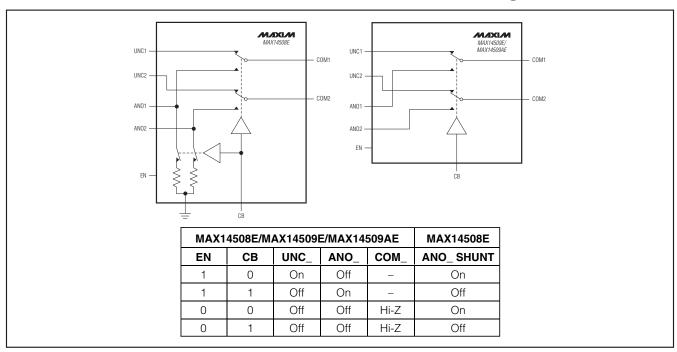


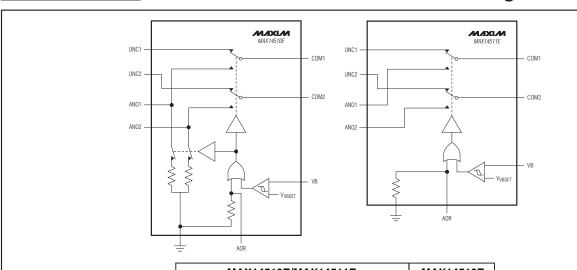




_Typical Operating Characteristics (continued)

 $(V_{CC} = 3.0V, T_A = +25^{\circ}C, unless otherwise noted.)$




Pin Description

PI	N				
MAX14508E/ MAX14509E/ MAX14509AE	MAX14510E/ MAX14511E	NAME	FUNCTION		
1	1	UNC1	USB Input 1. Normally closed terminal for switch 1.		
2	2	ANO2	Audio Input 2. Normally open terminal for switch 2.		
3	3	ANO1	Audio Input 1. Normally open terminal for switch 1.		
4	4	GND	Ground		
5	5	Vcc	Positive Supply-Voltage Input. Bypass V_{CC} to GND with a 0.1 μ F capacitor as close to the device as possible.		
6	6	COM1	Common Terminal for Switch 1		
7	7	COM2	Common Terminal for Switch 2		
8		СВ	Digital Control Input. Drive CB low to connect COM_ to UNC Drive CB high to connect COM_ to ANO		
9		EN	Active-High Enable Input. Drive EN high for normal operation. Drive EN low to put switches in high impedance. Do not connect negative signals to ANO_ or COM_ when EN is low.		
10	10	UNC2	USB Input 2. Normally closed terminal for switch 2.		
_	8	AOR	Audio Override Input. Drive AOR low to have VB control the switch. Drive AOR high to connect COM_ to ANO AOR has an internal pulldown resistor to GND.		
	9	VB	VBUS Detection Input. If $V_{VB} \ge V_{VBDET}$, COM_ connects to UNC Otherwise, COM_ connects to ANO		

_MAX14508E/MAX14509E/MAX14509AE Functional Diagrams/Truth Table

MAX14510E/MAX14511E Functional Diagrams/Truth Table

MA	MAX14510E				
VB	AOR	UNC_	ANO_	ANO_ SHUNT	
> V _{VBDET}	0	On	Off	On	
< V _{VBDET}	0	Off	On	Off	
Х	1	Off	On	Off	

X = Don't Care

Detailed Description

The MAX14508E–MAX14511E/MAX14509AE are high-ESD-protected single DPDT switches that operate from a +2.7V to +5.0V supply and are designed to multiplex USB 2.0 Hi-Speed signals and AC-coupled analog signals. These switches combine the low on-capacitance (CON) and low on-resistance (RON) necessary for high-performance switching applications. These devices meet the requirements for USB low-speed and full-speed signaling. The negative signal capability of the analog channel allows signals below ground to pass through without distortion.

Analog Signal Levels

The MAX14508E-MAX14511E/MAX14509AE are bidirectional, allowing ANO_, UNC_, and COM_ to be configured as either inputs or outputs. Note that UNC_ and ANO_ are only protected against ESD up to ±2kV (Human Body Model) and may require additional ESD protection if used as outputs. These devices feature a charge pump that generates a negative supply to allow analog signals as low as VCC - 5.0V to pass through ANO_. This allows AC-coupled signals that drop below ground to pass when operating from a single power supply. The negative charge pump is controlled by the enable line and the output of the COM_ fault protection circuit. The negative charge pump is active when EN is high and V_{COM} < V_{FP}. Note that if the fault protection is activated by a COM_ voltage greater than VFP, there must not be a negative voltage attached to the ANO_ inputs. For the MAX14508E/MAX14509E/MAX14509AE connect negative signals to ANO or COM only when EN is driven high.

Overvoltage Fault Protection

The MAX14508E–MAX14511E feature overvoltage fault protection on COM_, allowing compliance with USB requirements for voltage levels. Fault protection is triggered if the voltage applied to COM_ rises above VFP, protecting the switch and USB transceiver from damaging voltage levels.

VBUS Detection Input

The MAX14510E/MAX14511E feature a VBUS detection input (VB) that connects COM_ to UNC_ when V_{VB} exceeds the VBUS detection threshold (V_{VBDET}). For applications where VBUS is always present, drive the Audio Override Input (AOR) high to connect ANO_ to COM_ (see the *MAX14510E/MAX14511E Functional Diagrams/Truth Table*). Drive AOR low to have VB control the switch position. Drive AOR rail-to-rail to minimize power consumption.

Digital Control Input (CB)

The MAX14508E/MAX14509E/MAX14509AE provide a single-bit control logic input, CB. CB controls the switch position as shown in the *MAX14508E/MAX14509E/MAX14509AE Functional Diagrams/Truth Table*. Drive CB rail-to-rail to minimize power consumption.

Enable Input (EN)

The MAX14508E/MAX14509E/MAX14509AE feature a shutdown mode that reduces the supply current to less than 10nA and places the switches in high impedance. Drive EN low to place the devices in shutdown mode. Drive EN high for normal operation.

Click-and-Pop Suppression

The switched 100 Ω shunt resistors on the MAX14508E/MAX14510E automatically discharge any capacitance at the ANO_ terminals when they are unconnected from COM_. This reduces audio click-and-pop sounds that may occur when switching between USB and audio sources.

_Applications Information

Extended ESD Protection

ESD-protection structures are incorporated on all pins to protect against electrostatic discharges up to ±2kV (Human Body Model) encountered during handling and assembly. COM1 and COM2 are further protected against ESD up to ±15kV (Human Body Model) without damage. The ESD structures withstand high ESD both in normal operation and when the device is powered down. After an ESD event, the MAX14508E–MAX14511E/MAX14509AE continue to function without latchup.

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 5 shows the Human Body Model. Figure 6 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest that is then discharged into the device through a $1.5 \mathrm{k}\Omega$ resistor.

Layout

USB Hi-Speed requires careful PCB layout with 45Ω single-ended/90 Ω differential controlled-impedance matched traces of equal lengths. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

12 _______/VIXI/M

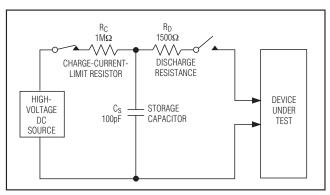
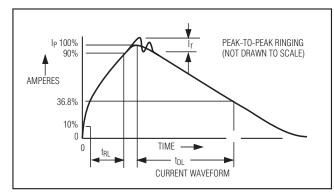
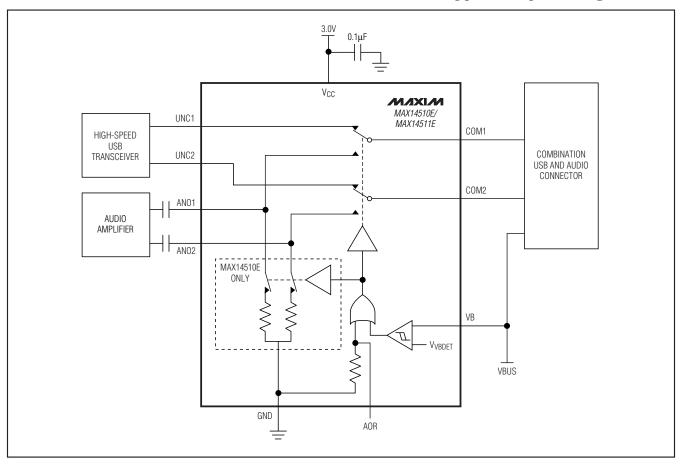


Figure 5. Human Body ESD Test Model




Figure 6. Human Body Current Waveform

Power-Supply Sequencing

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all devices. Apply V_{CC} before applying analog signals, especially if the analog signal is not current limited.

Typical Operating Circuit

Chip Information

PROCESS: BICMOS

_Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
10 Ultra-Thin QFN	V101A1CN-1	21-0028

_Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	5/08	Initial release	_
1	3/09	Released the MAX14510E, updated Absolute Maximum Ratings, Electrical Characteristics, Figure 4, and Layout section.	1, 2, 3, 5, 8, 12

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.