MIC5392/3

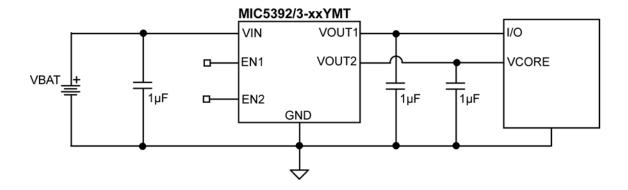
High-Performance Dual 150mA LDO

General Description

The MIC5392/3 is a tiny dual low-dropout linear regulator ideally suited for portable electronics. It is ideal for general purpose/digital applications which require high-power supply ripple rejection (PSRR) >60dB, eliminating the need for a bypass capacitor and providing two enable pins for maximum flexibility. The MIC5392/3 integrates two high-performance; 150mA LDOs into a tiny 6-pin, 1.2mm x 1.2mm leadless Thin DFN package, which provides exceptional thermal package characteristics.

The MIC5392/3 is a μ Cap design which enables operation with very small ceramic output capacitors for stability, thereby reducing required board space and component cost. The combination of low-drop-out voltage, high power supply rejection and exceptional thermal package characteristics makes it ideal for powering mobile phones camera modules, image sensors, PDAs, MP3 players and audio codec power applications.

The MIC5392/3 is available in fixed-output voltages in the tiny 6-pin 1.2mm x 1.2mm leadless Thin DFN package which is only 1.44mm² in area. Additional voltage options are available. Data sheets and support documentation can be found on Micrel's web site at: www.micrel.com.


Features

- 2.5V to 5.5V input voltage range
- Two 150mA output current LDOs
- High output accuracy
 - ±2% initial accuracy
- Low quiescent current (32µA per LDO)
- Stable with 1µF ceramic output capacitors
- · Independent enable pins
- Low dropout voltage (155mV at 150mA)
- Thermal-shutdown protection
- Current-limit protection
- Internal 25Ω output discharge circuit (MIC5393)
- Tiny 6-pin, 1.2mm × 1.2mm Thin DFN package

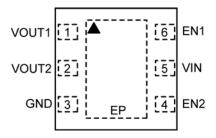
Applications

- · Camera phones
- · Mobile phones, tablet PCs
- GPS, PMP, PDAs, and handhelds
- · Audio codec power
- · Portable electronics

Typical Application

Camera DSP Power Supply Circuit

July 2012 M9999-072412-A


Ordering Information

Part Number (1)	Manufacturing Part Number	Marking Code	Voltage	Junction Temperature Range	Package ⁽²⁾
MIC5392-3.3/3.3YMT	MIC5392-SSYMT	RL	3.3/3.3V	-40°C to +125°C	6-Pin 1.2mm x 1.2mm Thin DFN
MIC5392-3.0/2.8YMT	MIC5392-PMYMT	RM	3.0/2.8V	-40°C to +125°C	6-Pin 1.2mm x 1.2mm Thin DFN
MIC5392-2.8/1.8YMT	MIC5392-MGYMT	RD	2.8/1.8V	-40°C to +125°C	6-Pin 1.2mm x 1.2mm Thin DFN
MIC5392-2.8/1.5YMT	MIC5392-MFYMT	RP	2.8/1.5V	-40°C to +125°C	6-Pin 1.2mm x 1.2mm Thin DFN
MIC5392-1.2/1.0YMT	MIC5392-4CYMT	RJ	1.2/1.0V	-40°C to +125°C	6-Pin 1.2mm x 1.2mm Thin DFN
MIC5393-3.3/3.3YMT*	MIC5393-SSYMT	UR	3.3/3.3V	-40°C to +125°C	6-Pin 1.2mm x 1.2mm Thin DFN
MIC5393-3.3/1.8YMT*	MIC5393-SGYMT	UB	3.3/1.8V	-40°C to +125°C	6-Pin 1.2mm x 1.2mm Thin DFN
MIC5393-3.0/3.0YMT*	MIC5393-PPYMT	UL	3.0/3.0V	-40°C to +125°C	6-Pin 1.2mm x 1.2mm Thin DFN

Notes:

- 1. Other voltages available. Contact Micrel for details.
- Thin DFN is a GREEN, RoHS-compliant package. Level finish is NiPdAu. Mold compound is Halogen Free.
 *MIC5393 offers Auto-Discharge function.

Pin Configuration

6-Pin 1.2mm \times 1.2mm Thin DFN (MT) (TOP VIEW)

Pin Description

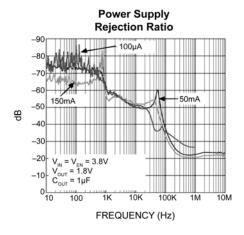
Pin Number	Pin Name	Pin Function
1	VOUT1	Output regulator 1. Connect a capacitor to ground.
2	VOUT2	Output regulator 2. Connect a capacitor to ground.
3	GND	Ground.
4	EN2	Enable Input for regulator 2. Logic High enables operation of regulator 2. Logic Low will shut down regulator 2. Do not leave floating.
5	VIN	Input Voltage supply. Connect a capacitor to ground.
6	EN1	Enable Input for regulator 1. Logic High enables operation of regulator 1. Logic Low will shut down regulator 1. Do not leave floating.
EP	ePad	Exposed heat sink pad. Connect to ground.

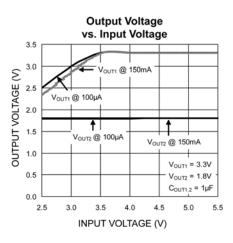
Absolute Maximum Ratings(1)

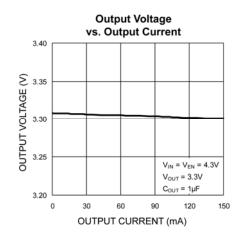
Operating Ratings⁽²⁾

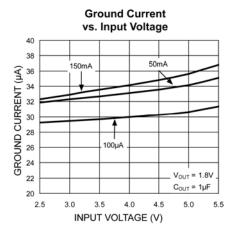
Supply Voltage (V _{IN})	+2.5V to 5.5V
Enable Voltage (V _{EN1} , V _{EN2})	0.3V to V _{IN}
Junction Temperature (T _J)	40°C to +125°C
Junction Thermal Resistance	
1.2mmx1.2mm Thin DFN-6 (θ_{JA})	73°C/W

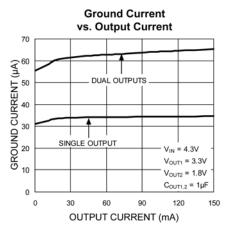
Electrical Characteristics⁽⁵⁾

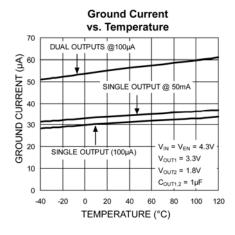

 $V_{IN} = V_{EN1} = V_{EN2} = V_{OUT} + 1V; \ higher \ of the two \ regulator \ outputs; \ I_{OUTLDO1} = I_{OUTLDO2} = 100 \mu A; \ C_{OUT1} = C_{OUT2} = 1 \mu F; \ T_J = 25^{\circ}C, \ \textbf{bold} \ values \ indicate -40^{\circ}C \ to +125^{\circ}C, \ unless \ noted.$

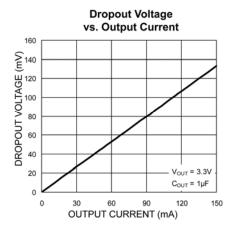

Parameter	Condition	Min.	Тур.	Max.	Units	
Output Voltage Acquirecy	Variation from nominal V _{OUT}	-2.0		+2.0	- %	
Output Voltage Accuracy	Variation from nominal V _{OUT} ; –40°C to +125°C	-3.0		+3.0		
Line Regulation	$V_{IN} = V_{OUT} + 1V$ to 5.5V		0.02	0.3	%/V	
Load Regulation	I _{OUT} = 100μA to 150mA		0.3	1	%	
Draw and Valtage	I _{OUT} = 50mA		50	110	mV	
Dropout Voltage	I _{OUT} = 150mA		155	310		
	V _{EN1} = High; V _{EN2} = Low; I _{OUT} = 0mA		32	45		
Ground Pin Current	V_{EN1} = Low; V_{EN2} = High; I_{OUT} = 0mA		32	45	μA	
	$V_{EN1} = V_{EN2} = High; I_{OUT1} = I_{OUT2} = 0mA$		57	85		
Ground Pin Current in Shutdown	$V_{EN1} = V_{EN2} = 0V$		0.05	1	μA	
Ripple Rejection	$f = 1kHz$; $C_{OUT} = 1\mu F$		60		dB	
Current Limit	V _{OUT} = 0V	200	325	550	mA	
Output Voltage Noise	C _{OUT} = 1µF, 10Hz to 100kHz		100		μV_{RMS}	
Auto-Discharge NFET Resistance	MIC5393 Only; V _{EN1} = V _{EN2} = 0V; V _{IN} = 3.6V		25		Ω	
Enable Inputs (EN1/EN2)						
Enable Innut Voltage	Logic Low			0.2	_ V	
Enable Input Voltage	Logic High	1.2				
Enable Innut Current	V _{IL} ≤ 0.2V		0.01	1	μА	
Enable Input Current	V _{IH} ≥ 1.2V		0.01	1		
Turn-On Time	C _{OUT} = 1µF		50	125	μs	

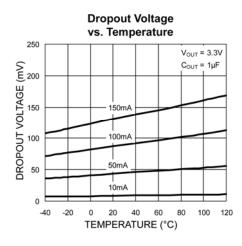

Notes:

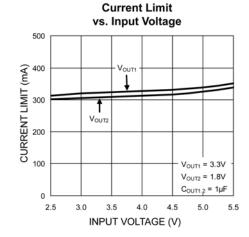

- 1. Exceeding the absolute maximum rating may damage the device.
- 2. The device is not guaranteed to function outside its operating rating.
- The maximum allowable power dissipation of any T_A (ambient temperature) is P_{D(max)} = (T_{J(max)} T_A) / θ_{JA}. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.
- 4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5kΩ in series with 100pF.
- Specification for packaged product only.

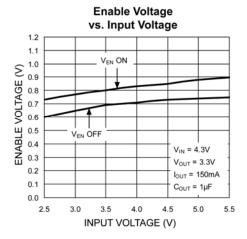

Typical Characteristics

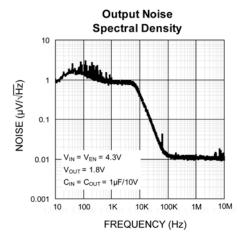


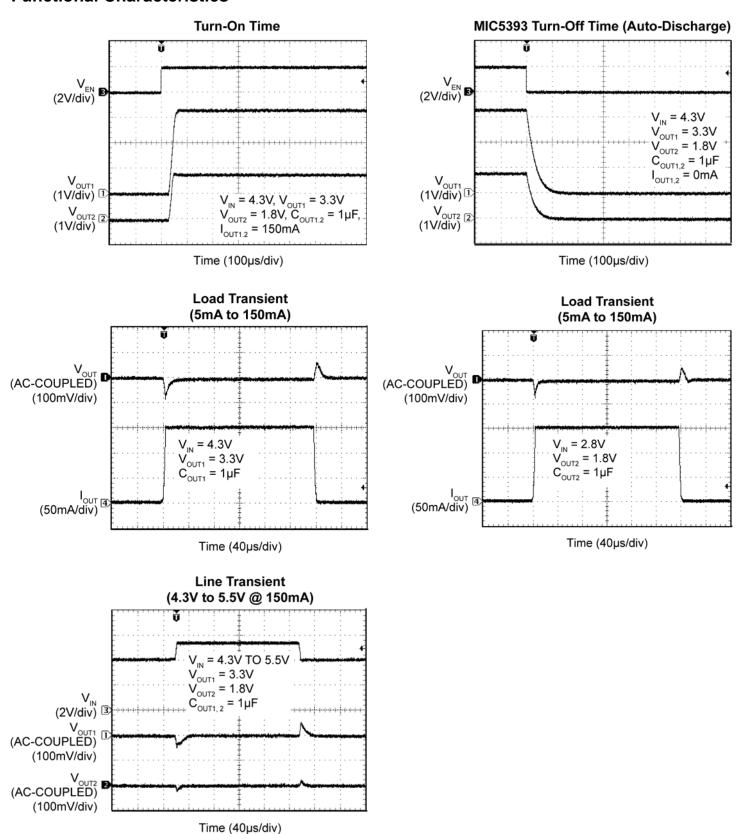












Typical Characteristics (Continued)

Functional Characteristics

Functional Block Diagrams

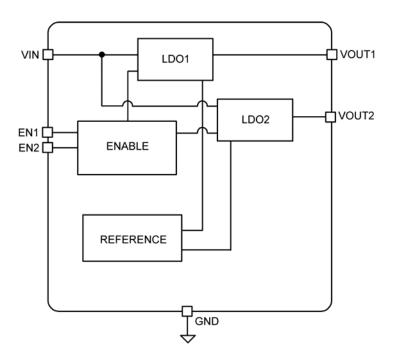


Figure 1. Simplified MIC5392 Functional Block Diagram

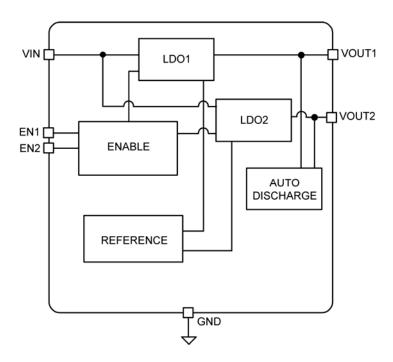


Figure 2. Simplified MIC5393 Functional Block Diagram

Application Information

MIC5392/3 is a dual 150mA LDO in a small 1.2mm x 1.2mm package. The MIC5393 includes an auto-discharge circuit for each of the LDO outputs that are activated when the output is disabled. The MIC5392/3 regulator is fully protected from damage due to fault conditions through linear current limiting and thermal shutdown.

Input Capacitor

The MIC5392/3 is a high-performance, high-bandwidth device. An input capacitor of $1\mu F$ capacitor is required from the input to ground to provide stability. Low-ESR ceramic capacitors provide optimal performance at a minimum of space. Additional high-frequency capacitors, such as small-valued NPO dielectric-type capacitors, help filter out high-frequency noise and are good practice in any RF-based circuit. X5R or X7R dielectrics are recommended for the input capacitor. Y5V dielectrics lose most of their capacitance over temperature and are therefore, not recommended.

Output Capacitor

The MIC5392/3 requires an output capacitor of $1\mu F$ or greater to maintain stability. The design is optimized for use with low-ESR ceramic chip capacitors. High-ESR capacitors may cause high frequency oscillation. The output capacitor can be increased, but performance has been optimized for a $1\mu F$ ceramic output capacitor and does not improve significantly with larger capacitance.

X7R/X5R dielectric-type ceramic capacitors recommended because of their temperature performance. X7R-type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60%, respectively, over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric, the value must be much higher than an X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range.

No-Load Stability

Unlike many other voltage regulators, the MIC5392/3 will remain stable and in regulation with no load. This is especially important in CMOS RAM to keep applications alive.

Enable/Shutdown

The MIC5392/3 comes with two active-high enable pins that allow each regulator to be disabled independently. Forcing the enable pin low disables the regulator and sends it into a "zero" off-mode-current state. In this state, current consumed by the regulator goes nearly to zero. When disabled the MIC5393 switches a 25 Ω (typical) load on the regulator output to discharge the external capacitor.

Forcing the enable pin high enables the output voltage. The active-high enable pin uses CMOS technology and the enable pin cannot be left floating; a floating enable pin may cause an indeterminate state on the output.

Thermal Considerations

The MIC5392/3 is designed to provide 150mA of continuous current for both outputs in a very small package. Maximum ambient operating temperature can be calculated based on the output current and the voltage drop across the part. For example if the input voltage is 3.6V, the output voltage is 2.8V for V_{OUT1} , 1.8V for V_{OUT2} and the output current = 150mA. The actual power dissipation of the regulator circuit can be determined using the equation:

$$P_D = (V_{IN} - V_{OUT1}) I_{OUT1} + (V_{IN} - V_{OUT2}) I_{OUT2} + V_{IN} I_{GND}$$

Because this device is CMOS and the ground current is typically <100 μ A over the load range, the power dissipation contributed by the ground current is <1% and can be ignored for this calculation:

$$P_D = (3.6V - 2.8V) \times 150mA + (3.6V - 1.8) \times 150mA$$

 $P_D = 0.39W$

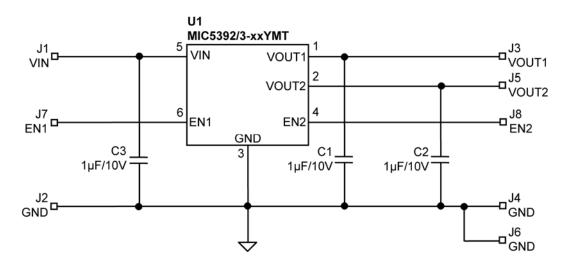
To determine the maximum ambient operating temperature of the package, use the junction-to-ambient thermal resistance of the device and the following basic equation:

$$P_{D(MAX)} = \left(\frac{T_{J(MAX)} - T_{A}}{\theta_{JA}}\right)$$

 $T_{J(MAX)}$ = 125°C, and the maximum junction temperature of the die, θ_{JA} , thermal resistance = 73°C/W.

Substituting P_D for $P_{D(max)}$ and solving for the ambient operating temperature will give the maximum operating conditions for the regulator circuit. The junction-to-ambient thermal resistance for the minimum footprint is 73°C/W.

The maximum power dissipation must not be exceeded for proper operation.


For example, when operating the MIC5392-MGYMT at an input voltage of 3.6V and 150mA loads at each output with a minimum footprint layout, the maximum ambient operating temperature T_A can be determined as follows:

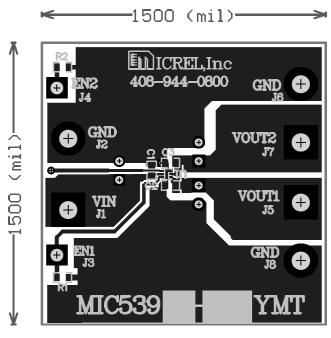
$$0.39W = (125^{\circ}C - T_{A})/(73^{\circ}C/W)$$

 $T_{A} = 96^{\circ}C$

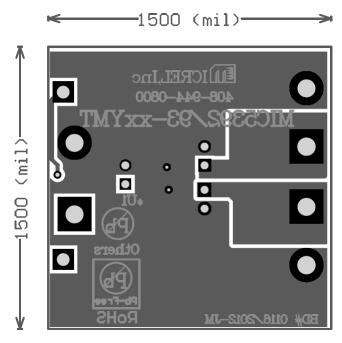
Therefore, a 2.8V/1.8V application with 150mA at each output current can accept an ambient operating temperature of 96°C in a 1.2mm x 1.2mm DFN package. For a full discussion of heat sinking and thermal effects on voltage regulators, refer to the "Regulator Thermals" section of *Micrel's Designing with Low-Dropout Voltage Regulators* handbook. This information can be found on Micrel's website at:

http://www.micrel.com/_PDF/other/LDOBk_ds.pdf

Typical Application Circuit

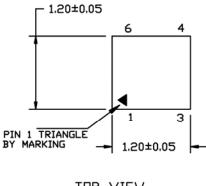

Bill of Materials

Item	Part Number	Manufacturer	Description	Qty.
C1, C2, C3	GRM188R61A105KE19D	Murata ⁽¹⁾	1μF, 10V, X5R, 0603	3
U1	MIC5392/3-XXYMT	Micrel ⁽²⁾	High-Performance Dual 150mA LDO	1

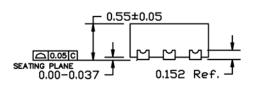

Notes:

Murata: www.murata.com.
 Micrel, Inc.: www.micrel.com.

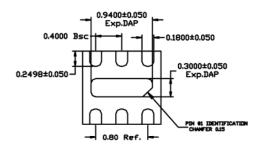
PCB Layout Recommendations

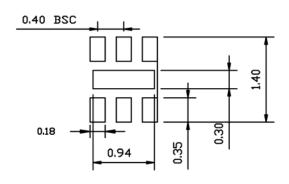


Top Layer



Bottom Layer


Package Information


TOP VIEW NOTE: 1, 2, 3

SIDE VIEW NOTE: 1, 2, 3

BOTTOM VIEW NOTE: 1, 2, 3

RECOMMENDED LAND PATTERN

NOTE:

- 1. MAX PACKAGE WARPAGE IS 0.05 MM
- MAX ALLOWABLE BURR IS 0.076MM

IN ALL DIRECTIONS

PIN #1 IS ON TOP WILL BE LASER MARKED

6-Pin 1.2mm x 1.2mm Thin DFN (MT)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry. specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2012 Micrel, Incorporated.