

5-TAP SMD DELAY LINE

$T_D/T_R = 3$

(SERIES 1518)

FEATURES

- 5 taps of equal delay increment
- Delays to 200ns
- Low profile
- Epoxy encapsulated
- Meets or exceeds MIL-D-23859C

IN	1	14	N/C
N/C	2	13	T1
T2	3	12	N/C
N/C	4	11	T3
T4	5	10	N/C
T5	6	9	N/C
GND	7	8	N/C

PACKAGES

IN Signal Input
 T1-T5 Tap Outputs
 GND Ground

Note: Standard pinout shown
 Alt. pinout available

FUNCTIONAL DESCRIPTION

The 1518-series device is a fixed, single-input, five-output, passive delay line. The signal input (IN) is reproduced at the outputs (T1-T5) in equal increments. The delay from IN to T5 (T_D) and the characteristic impedance of the line (Z) are determined by the dash number. The rise time (T_R) of the line is 30% of T_D , and the 3dB bandwidth is given by $1.05 / T_D$. The device is available in a 14-pin SMD with two pinout options.

Part numbers are constructed according to the scheme shown at right. For example, 1518-101-500A is a 100ns, 50Ω delay line with pinout code A. Similarly, 1518-151-501 a is 150ns, 500Ω delay line with standard pinout.

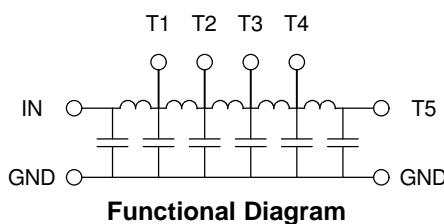
PART NUMBER CONSTRUCTION

1518 - XXX - ZZZ p

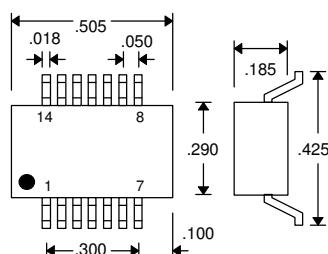
DELAY TIME

Expressed in nanoseconds (ns)
 First two digits are significant figures
 Last digit specifies # of zeros to follow

IMPEDANCE


Expressed in nanoseconds (ns)
 First two digits are significant figures
 Last digit specifies # of zeros to follow

PINOUT CODE


See Table
 Omit for STD pinout

SERIES SPECIFICATIONS

- Dielectric breakdown: 50 Vdc
- Distortion @ output: 10% max.
- Operating temperature: -55°C to +125°C
- Storage temperature: -55°C to +125°C
- Temperature coefficient: 100 PPM/°C

Functional Diagram

Package Dimensions

DELAY SPECIFICATIONS

T_D (ns)	T_I (ns)	T_R (ns)	ATTENUATION (%) TYPICAL				
			$Z=50\Omega$	$Z=100\Omega$	$Z=200\Omega$	$Z=300\Omega$	$Z=500\Omega$
5	1.0	3.0	N/A	5	N/A	N/A	N/A
10	2.0	4.0	3	5	5	N/A	N/A
15	3.0	5.0	3	5	5	N/A	N/A
20	4.0	6.0	3	5	5	5	N/A
25	5.0	7.0	3	5	5	5	7
30	6.0	10.0	3	5	5	5	7
40	8.0	13.0	3	5	5	5	7
50	10.0	15.0	3	5	5	7	7
60	12.0	20.0	3	5	6	7	8
75	15.0	25.0	3	5	6	7	8
80	16.0	26.0	4	5	6	7	8
100	20.0	30.0	4	5	6	7	8
110	22.0	32.0	4	5	6	7	8
125	25.0	40.0	4	5	6	7	8
150	30.0	50.0	N/A	5	8	10	10
180	36.0	60.0	N/A	7	8	10	10
200	50.0	70.0	N/A	8	10	12	12

Notes: T_I represents nominal tap-to-tap delay increment
 Tolerance on $T_D = \pm 5\%$ or $\pm 2\text{ns}$, whichever is greater
 Tolerance on $T_I = \pm 5\%$ or $\pm 1\text{ns}$, whichever is greater
 "N/A" indicates that delay is not available at this Z

PINOUT CODES

CODE	IN	T1	T2	T3	T4	T5	GND
STD	1	13	3	11	5	6	7
A	1	12	4	10	6	7	8,14

©1997 Data Delay Devices

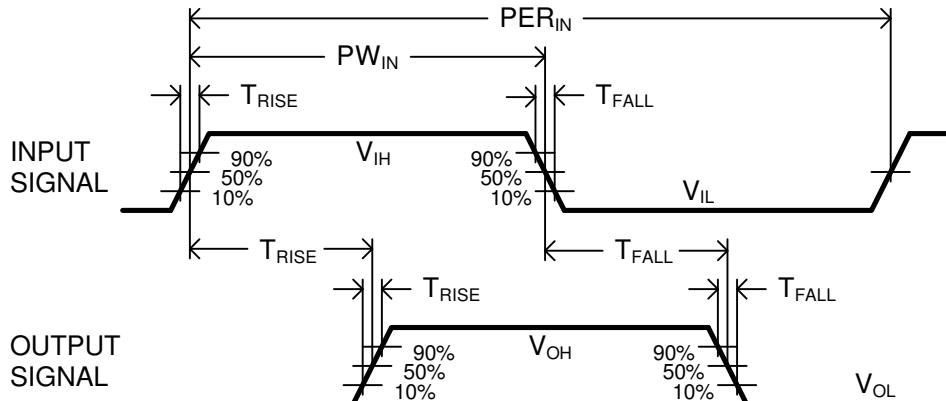
PASSIVE DELAY LINE TEST SPECIFICATIONS

TEST CONDITIONS

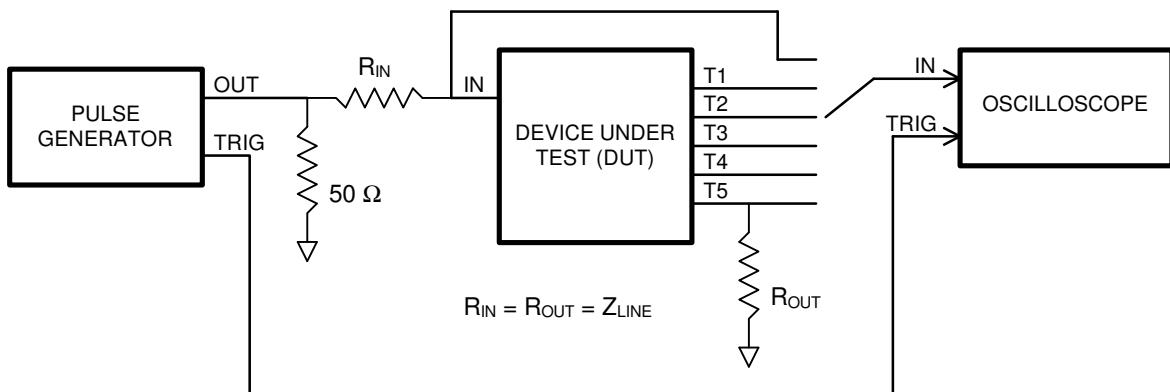
INPUT:

Ambient Temperature: $25^{\circ}\text{C} \pm 3^{\circ}\text{C}$ Input Pulse: High = 3.0V typical
Low = 0.0V typical

Source Impedance: 50Ω Max.


Rise/Fall Time: 3.0 ns Max. (measured
at 10% and 90% levels)Pulse Width ($T_D \leq 75\text{ns}$): $PW_{IN} = 100\text{ns}$ Period ($T_D \leq 75\text{ns}$): $PER_{IN} = 1000\text{ns}$ Pulse Width ($T_D > 75\text{ns}$): $PW_{IN} = 2 \times T_D$ Period ($T_D > 75\text{ns}$): $PER_{IN} = 10 \times T_D$

OUTPUT:


 $R_{load} = 10\text{M}\Omega$ $C_{load} = 10\text{pf}$

Threshold: 50% (Rising & Falling)

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

Timing Diagram For Testing

Test Setup