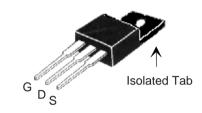


Preliminary Technical Information

PolarHV[™] Power MOSFET

IXTP 10N60PM

 $V_{DSS} = 600 V$ $I_{D25} = 5 A$ $R_{DS(an)} \le 740 \text{ m}\Omega$


(Electrically Isolated Tab)

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum	Ratings
V _{DSS}	$T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}$	600	V
	$T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}; R_{GS} = 1 \text{ M}\Omega$	600	V
V _{GS}	Continuous	±30	V
V _{GSM}	Transient	±40	
I _{D25}	$T_{\rm C} = 25^{\circ}{\rm C}$	5	A
	$T_{\rm C} = 25^{\circ}{\rm C}$, pulse width limited by $T_{\rm JM}$	30	A
I _{AR}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$	10	A
E _{AR}		20	mJ
E _{AS}		500	mJ
dv/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, \mathrm{di/dt} \leq 100 \mathrm{A/\mu s}, \mathrm{V_{_{DD}}} \leq \mathrm{V_{_{DSS}}},$ $T_{_{\mathrm{J}}} \leq 150^{\circ}\mathrm{C}, \mathrm{R_{_{\mathrm{G}}}} = 10 \Omega$	10	V/ns
P_{D}	T _C = 25°C	50	W
T _J		-55 +150	°C
T _{JM}		150	°C
T _{stg}		-55 +150	°C
T _L	1.6 mm (0.062 in.) from case for 10 s	300	°C
	Plastic body for 10 s	260	°C
\mathbf{M}_{d}	Mounting torque	1.13/10	Nm/lb.in.
Weight		4	g

OVERMOLDED TO-220 (IXTP...M) OUTLINE

Features

- Plastic overmolded tab for electrical isolation
- International standard package
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
 - easy to drive and to protect

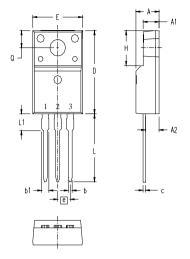
Advantages

- Easy to mount
- Space savings
- High power density

Symbol (T _J = 25°C, u	Test Conditions nless otherwise specified)	М	Cha in.	aracteri Typ.	stic Val Max.	
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	60	00			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 100\mu A$	3	.0		5.0	V
GSS	$V_{GS} = \pm 30 \ V_{DC}, \ V_{DS} = 0$				±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 125°C			5 50	μA μA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 5 \text{ A}$ Pulse test, t \le 300 \text{ \text{\mu}s, duty c}	cycle d ≤2 %			740	mΩ

© 2006 IXYS All rights reserved DS99450E(04/06)

Symbo	ol Test Conditions C $ (T_{_J} = 25^{\circ} C, \text{ unless } $ Min.		ristic Values ise specified) Max.
\mathbf{g}_{fs}	V_{DS} = 10 V; I_{D} = 5 A, pulse test 6	11	S
\mathbf{C}_{iss})	1610	pF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	165	pF
C _{rss}	J	14	pF
$\mathbf{t}_{d(on)}$		20	ns
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 10 \text{ A}$	24	ns
$\mathbf{t}_{d(off)}$	$R_{\rm g} = 10 \ \Omega \ (External)$	55	ns
t,	J	18	ns
Q _{g(on)})	32	nC
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = 5 \text{ A}$	11	nC
\mathbf{Q}_{gd}	J	10	nC
R_{thJS}			2.5 °C/W


Source-Drain Diode

Characteristic Values

(T₁ = 25°C, unless otherwise specified)

Symbol	lest Conditions	win.	Typ.	wax.	
I _s	$V_{GS} = 0 V$			10	Α
I _{SM}	Repetitive			30	Α
V _{SD}	$\begin{split} &I_{_F} = I_{_S}, \ V_{_{GS}} = 0 \ V, \\ &\text{Pulse test, } t \leq 300 \ \mu\text{s, duty cycle d} \leq 2 \ \% \end{split}$			1.5	V
t _{rr}	$I_F = 9 \text{ A}, -di/dt = 100 \text{ A}/\mu\text{s}$ $V_R = 100 \text{ V}$		500		ns

ISOLATED TO-220 (IXTP...M)

Terminals:

2 - Drain (Collector) 3 - Source (Emitter)

MYZ	INCHES M		MILLIN	METERS
21M	MIN	MAX	MIN	MAX
Α	.177	.193	4.50	4.90
A1	.092	.108	2.34	2.74
A2	.101	.117	2.56	2.96
b	.028	.035	0.70	0.90
b1	.050	.058	1.27	1.47
С	.018	.024	0.45	0.60
D	.617	.633	15.67	16.07
E	.392	.408	9.96	10.36
е	.100 BSC		2.54	BSC
Н	.255	.271	6.48	6.88
L	.499	.523	12.68	13.28
L1	.119	.135	3.03	3.43
ØΡ	.121	.129	3.08	3.28
Q	.126	.134	3.20	3.40

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.