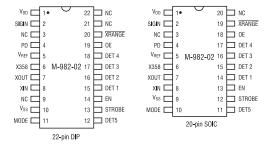


Precise Call Progress Tone Detector


Features

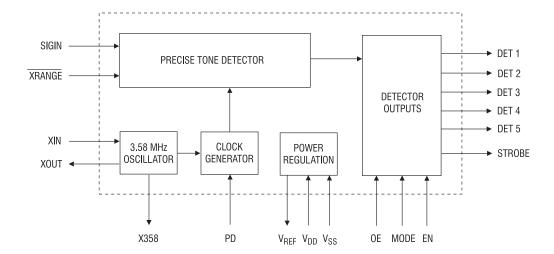
- Precise detection of call progress tones
- · Linear (analog) input
- · Digital (CMOS compatible), tri-state outputs
- 22-pin DIP and 20-pin SOIC
- Single supply 3 to 5 volt (low power CMOS)
- Inexpensive 3.58 MHz crystal time base
- Wide dynamic range (30 dB)
- Lower power consumption (power-down mode)
- 425 Hz detection

Applications

- Automatic dialers
- Dialing modems
- Traffic
- · Measurement equipment
- Test equipment
- · Service evaluation
- · Billing systems

Pin Diagram

Description


The M-982-02 is an integrated circuit precise tone detector for special-purpose use in automatic following of switched telephone calls. The circuit uses low-power CMOS techniques to provide the complete filtering and control required for this function. The basic timing of the M-982-02 is designed to permit operation with almost any progress tone system. The use of integrated circuit techniques allows the M-982-02 to pack the five filters for call progress following into a single 22-pin DIP or 20-pin SOIC. A 3.58 MHz crystal-controlled time base guarantees accuracy and repeatability.

The M-982-02 is an enhanced drop-in replacement for the M-982-01. It has a wider operating voltage range (down to 3V). It has lower power consumption under normal operating conditions. In addition, a power-down (PD) feature is provided to further reduce power consumption when inactive. It includes a 425 Hz detector to support common international call progress requirement.

Ordering Information

Part #	Description
M-982-02P	22-pin plastic DIP
M-982-02S	20-pin plastic SOIC
M-982-02T	20-pin plastic SOIC,Tape and Reel

Block Diagram

Absolute Maximum Ratings

Storage Temperature	-40 to 150°C
Operating Ambient Temperature	-40 to 85°C
V _{DD}	7V
Input Voltage on SIGIN	V_{SS} - 6.5 to V_{DD} + 0.3V
Input Voltages (except SIGIN)	V_{SS} - 0.3 to V_{DD} + 0.3 V
Lead Soldering Temperature	260° C for 5 seconds

Note: Exceeding these ratings may permanently damage the M-982-02.

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this data sheet is not implied. Exposure of the device to the absolute maximum ratings for an extended period may degrade the device and effect its reliability.

Specifications

	Parameter		Conditions	Min	Max	Units	Notes	
Operating	V _{DD}		-	2.7	5.5	V	-	
Conditions	Power supply noise		0.1 - 5 kHz	-	20	mV p-p		
Power	Current drain (I _{DD})		V _{REF} open	-	15	mA	-	
V_{REF}	V _{REF}		-	48% of V _{DD}	52% of V _{DD}	V	-	
TIEI	Impedance		-	3.25	8.25	kW		
Signal	Frequency range		in-band signal	-1	+1	% of f _o	1	
Detection	Level: V _{DD} = 5.0V		$\overline{XRANGE} = open$	-30	0	dBm		
				(24.5 mV)	(775 mV)			
			$XRANGE = V_{SS}$	-40	-10	dBm		
				(7.8 mV)	(245 mV)	-		
	Level: $V_{DD} = 3.0V$		XRANGE = open	-33 (17.4 mV)	-3 (549 mV)	dBm		
			$XRANGE = V_{SS}$	-43 (5.5 mV)	-13 (173.5 mV)	dBm		
	Duration (t _{DD})		-	200	-	ms		
	Bridge time (t _{BB})		-	-	20	ms		
	Level skew between adj	acent						
	inband signals		for detection of both	-	6	dB		
	High level to low level s	ignal for	high = 0 dBm (775 mV)	1	-	S	-	
	detection of both (t _{II})		low = -30 dBm (24.5 mV)					
	Time to output (t _{DO})		SIGIN ≈ -24 dBm	-	200	ms		
			SIGIN < -24 dBm	-	240	ms -		
	Time from DET n to STF	ROBE (t _{DS})	-	-	10	ms		
Signal	Frequency range		-	-6	-6	% of f	1	
Rejection	Level: V _{DD} = 5.0V		XRANGE = open	-	-50(2.5 mV)	dBm		
			XRANGE = V _{SS}	-	-60 (0.8 mV)	dBm		
	Level: V _{DD} = 3.0V		XRANGE= open	-	-53 (1.7 mV)	dBm		
			XRANGE = V _{SS}	-	-63 (.6 mV)	dBm		
	Interval duration (t _{ID})		-	160	-	ms		
	Time to output (T _{IO})		-	-	200	ms		
Outputs	DET n,	V _{OL}	I _{SINK} = -1mA	-	0.5	V		
•	STROBE pins	V _{OH}	I _{SOURCE} =1mA	V _{DD} -0.5	-	V	-	
	DET n pins	I _{oz}	$V_0 = V_{DD}, V_{SS}$	-	1	μA		
Inputs	EN, OE, XRANGE,	VIL	=	-	0.5	V	-	
·	MODE, PD pins	VIH	VDD = 5V	VDD - 2.0	-	V		
		<u> </u>	VDD = 2.7V	VDD - 0.5	-	V		
	Pull-up and Pull-down	MODE = VSS	VDD = 5V	12.5	50	μA		
	currents		VDD = 2.7V	4	20	μA		
		/Xrange = VSS	-	2	6	μA		
		PD =VDD	-	4	10	μA		

Specifications (continued)

Parameter			Conditions	Min	Max	Units	Notes
	SIGIN pin	Voltage range	-	-6.5	VDD	V	
		Input impedance	f=500 Hz	80	-	kΩ	
		Input spectrum	-	-	28	kHz	
Clock	External clock	VIL	XOUT open	-	0.2	V	
	connected to XIN pin	VIH	XOUT open	VDD-0.2	-	V	
		Duty cycle	XOUT open	40	60	%	
	XIN, XOUT with crystal Ca	pacitance	-	-	10	pF	
	osc. active	Internal resistance	-	20	-	MW	
		Power up (TPU)	PD hi to lo	-	30	ms	
	X358 pin	VOL	CL = 20 pF,	-	0.2	V	
			ISINK = -1mA				
		VOH	CL = 20 pF,				
			ISOURCE =1mA	VDD - 0.2	-	V	
		Duty cycle	CL = 20 pF	40	60	%	
Tri-state	tEN,(High Z to Low Z)	CL = 50 pF,	-	250	ns		1
Operation	tDE,(Low Z to High)Z	RL = 100 kW	-	250	ns		1

Unless otherwise noted, V_{DD} - V_{SS} = 5V, Ta = 25°C, PD at logical low state, and XRANGE at a logical high state. Power levels are in dBm referenced to 600 ohm. DC voltages are referenced to V_{SS}. Notes:

1. Per tone.

Pin Functions

Pin	Funtion
DET 1	Active high tri-state output, detect for 350 Hz.
DET 2	Active high tir-state ooutput, detect for 400/620 Hz.
	(See Note.)
DET 3	Active high tri-state output, detect for 440 Hz.
DET 4	Active high tri-state output, detect for 480 Hz.
DET 5	Active high tri-state output, detect for 425 Hz.
EN	Active high enabled, when low drives STROBE low.
0E	Active high input. When low tri-state DET n pins.
SIGIN	Analog signal input (internally capacitive coupled).
STROBE	Active high output, indicates valid DET n.
V _{DD}	Most positive power supply input pin.
V _{REF}	Internally generated mid-power supply voltage
1121	(output).
V_{SS}	Most negative power supply input pin.
X358	Buffered oscillator output (3.58 MHz).
XIN	Crystal oscillator or digital clock input.
XOUT	Crystal oscillator output. Used only with a crystal.
	Use X358 when clock output signal is required.
XRANGE	Active low input. Adds 10 dB of gain to input stage.
MODE	Compatibility selection. Connection to VSS selects
	400 Hz detection. (M-981-02 emulation.) Connection
	to V _{DD} or no connection selects 620 Hz detection.
PD	Power-down operation, logic high inhibits internal
	clock. Internal pulldown resistor.

Note: This output indicates 400 Hz detect when MODE is connected to $\rm V_{SS}$ and 620 Hz detect when open, or connected to $\rm V_{DD}$.

Call Progress Tones

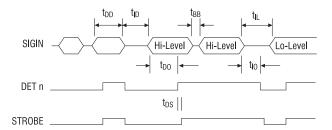
Freque	ency (HZ)	Use
1	2	
350	440	Dial Tone
400	Off	Special
440	Off	Alert Tone
440	480	Audible Ring
440	620	Pre-empt
480	Off	Bell High Tone
480	620	Reorder (Bell Low)
350	Off	Special
620	Off	Special
941	1209	DTMF "⋆"
425	Off	European

Call Progress Tone Detection

Call progress tones are audible tones sent from switching systems to calling parties to show the status of calls. Calling parties can identify the success of a call placed by what is heard after dialing. The type of tone used and its timing vary from system to system, and though intended for human ears these signals can provide valuable information for automated calling systems.

The M-982-02 contains five signal detectors sensitive to the frequencies often used for these progress tones. Electronic equipment monitoring the DET n outputs of the M-982-02 can determine the nature of signals present by measuring their duty cycle. See the Tri-State Timing Diagram on page 5 for a diagram of a circuit that could be used to permit a microcomputer to directly monitor tones on the telephone line. Much of the character of the progress tones is in their duty cycle or cadence (sometimes referred to as interruption rate). This information, coupled with level and frequency indication from the M-982-02, can be used to decide what progress tones have been encountered. For example,dial tones as shown in the Call Progress Tone tabel on page 3 are usually "on" continuously and

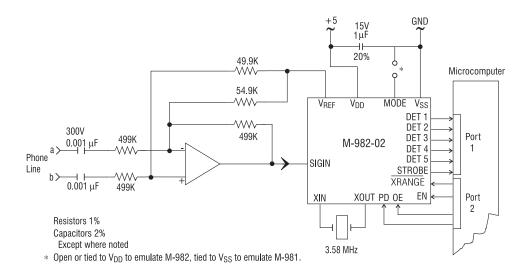
last until the first dial digit is received by the switching system. Line Busy, on the other hand, is turned off and on at a rate of 1 Hz with a a 50% duty cycle, or an interruption rate of 60 times per minute (60 IPM). The tones can be distinguished in this way. It should be noted that while such techniques will usually be effective, there are some circumstances in which the M-982-02 cannot be accurately used. Examples include situations where ringback tone may be short or not even encountered. Ringback may be provided at ringing voltage frequency (20 or 30 Hz) with some harmonics and may not fall in the detect range, and speech or other strong noise may obscure tones making cadence measurement difficult.


Standards do exist and should be consulted for your particular application. In North America AT&Ts "Notes on the Network" or EIAs RS-464 PBX standard should be reviewed. In Europe tone plans may vary with locale, in which case the CEPT administration in each country must be consulted. Outside these areas, national PTT organizations can provide information on the systems within their borders.

Truth Table

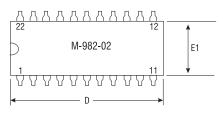
Signal Present (fo)	Mode	Det 1	Det 2	Det 3	Det 4	Det 5	Strobe	PD	0E	EN
350 Hz	Х	1	Χ	Х	Χ	Х	1	0	1	1
400 Hz (Note)	0	Χ	1	X	Х	Х	1	0	1	1
620 Hz (Note)	1/open	Χ	1	Χ	Χ	Χ	1	0	1	1
440 Hz	Х	Χ	Χ	1	Χ	Χ	1	0	1	1
480 Hz	X	Χ	X	X	1	Х	1	0	1	1
425 Hz	Χ	Χ	Χ	Χ	Χ	1	1	0	1	1
Other (no detect)	Х	0	0	0	0	0	0	0	1	1
Any	Х	0	0	0	0	0	0	1	1	Х
Any	Х	0	0	0	0	0	0	0	1	0
Any	X		High Impedance				X	0	0	1
Any	Х		High Impedance				0	0	0	0
Any	Х		High Impedance					1	0	Х

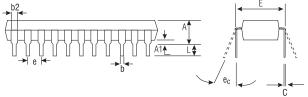
Signal Timing

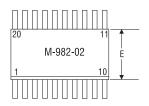

Tri-State Timing

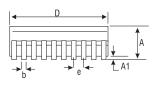
Power-Down Timing

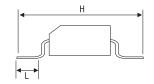
Typical Application




Rev. 4 www.clare.com 5


Package Dimensions


22-Pin DIP



20-Pin SOIC

Drawing not to scale. Does not reflect actual part marking.

	Tolerances (inches)			Metric Approximation (mm)			
	Min	Nom	Max	Min	Nom	Max	
Α	-	-	.210	-	-	5.33	
A1	.015	-	-	.38	-	-	
b	.014	-	.022	.36	-	.56	
b2	.045	.060	.065	1.1	1.5	1.7	
С	.009	-	.015	.23	-	.38	
D	1.065	1.085	1.120	27.1	27.6	28.4	
E	.390	.415	.425	9.9	10.5	10.8	
E1	.330	.360	.390	8.4	9.1	9.9	
е		.100 BSC		2			
ес	0°	15°	15°	0°		15°	
L	.115	.130	.160	2.9	3.3	4.1	

	Tolerand	es (mm)	S/ approximat	AE ion(inches)	
	Min	Max	Min	Max	
A	2.35	2.65	.0926	.1043	
A1	.10	.30	.0040	.0118	
b	.33	.51	.013	.020	
D	12.60	13.00	.4961	.5118	
E	7.4	7.6	.2914	.2992	
е	1.27	BSC	.050 BSC		
Н	10.00	10.65	.394	.419	
L	.40	1.27	.016	.050	

CLARE LOCATIONS

Clare Headquarters 78 Cherry Hill Drive Beverly, MA 01915 Tel: 1-978-524-6700

Fax: 1-978-524-4900 Toll Free: 1-800-27-CLARE

Clare Switch Division 4315 N. Earth City Expressway Earth City, MO 63045

Tel: 1-314-770-1832 Fax: 1-314-770-1812

Clare Micronix Division 145 Columbia Aliso Viejo, CA 92656-1490

Tel: 1-949-831-4622 Fax: 1-949-831-4628

SALES OFFICES

AMERICAS

Americas Headquarters

Clare

78 Cherry Hill Drive Beverly, MA 01915 Tel: 1-978-524-6700 Fax: 1-978-524-4900

Toll Free: 1-800-27-CLARE

Eastern Region

Clare

603 Apache Court Mahwah, NJ 07430 Tel: 1-201-236-0101 Fax: 1-201-236-8685

Toll Free: 1-800-27-CLARE

Central Region

Clare Canada Ltd. 3425 Harvester Road, Suite 202 Burlington, Ontario L7N 3N1

Tel: 1-905-333-9066 Fax: 1-905-333-1824

Western Region

Clare

1852 West 11th Street, #348

Tracy, CA 95376 Tel: 1-209-832-4367 Fax: 1-209-832-4732 Toll Free: 1-800-27-CLARE

Canada

Clare Canada Ltd. 3425 Harvester Road, Suite 202 Burlington, Ontario L7N 3N1

Tel: 1-905-333-9066 Fax: 1-905-333-1824

EUROPE

European Headquarters

CP Clare nv Bampslaan 17 B-3500 Hasselt (Belgium) Tel: 32-11-300868 Fax: 32-11-300890

France

Clare France Sales Lead Rep 99 route de Versailles 91160 Champlan France

Tel: 33 1 69 79 93 50 Fax: 33 1 69 79 93 59

Germany

Clare Germany Sales ActiveComp Electronic GmbH Mitterstrasse 12 85077 Manching Germany

Tel: 49 8459 3214 10 Fax: 49 8459 3214 29

Italy

C.L.A.R.E.s.a.s. Via C. Colombo 10/A I-20066 Melzo (Milano) Tel: 39-02-95737160 Fax: 39-02-95738829

Sweden

Clare Sales Comptronic AB Box 167 S-16329 Spånga Tel: 46-862-10370 Fax: 46-862-10371

United Kingdom

Clare UK Sales Marco Polo House Cook Way Bindon Road Taunton

UK-Somerset TA2 6BG Tel: 44-1-823 352541 Fax: 44-1-823 352797

ASIA/PACIFIC

Asian Headquarters

Clare Room N1016, Chia-Hsin, Bldg II, 10F, No. 96, Sec. 2 Chung Shan North Road Taipei, Taiwan R.O.C.

Tel: 886-2-2523-6368 Fax: 886-2-2523-6369

http://www.clare.com

Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare's Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in sys-tems intended for surgical implant into the body, or in other appli-cations intended to support or sustain life, or where malfunction of Clare's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.

Specification: DS-M982-02-R4 ©Copyright 2001, Clare, Inc. All rights reserved. Printed in USA.