

Date:- 17 Nov, 2004

Data Sheet Issue: 1a

Provisional Data

Medium Voltage Thyristor

Types K3503F#450 to K3503F#520

(Development Type No. KX094FC450-520)

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V_{DRM}	Repetitive peak off-state voltage, (note 1)	4500-5200	V
V_{DSM}	Non-repetitive peak off-state voltage, (note 1)	4500-5200	V
V_{RRM}	Repetitive peak reverse voltage, (note 1)	4500-5200	V
V_{RSM}	Non-repetitive peak reverse voltage, (note 1)	4600-5300	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
$I_{T(AV)M}$	Maximum average on-state current, T _{case} =55°C, (note 2)	3898	Α
$I_{T(AV)M}$	Maximum average on-state current, T _{sink} =55°C (note 2)	3503	Α
$I_{T(AV)M}$	Maximum average on-state current. T _{sink} =85°C, (note 2)	2416	Α
$I_{T(AV)M}$	Maximum average on-state current T _{sink} =85°C, (note 3)	1472	Α
I _{T(RMS)}	Nominal RMS on-state current, Tsink=25°C, (note 2)	6898	Α
I _{T(d.c.)}	D.C. on-state current, T _{sink} =25°C, (note-4)	6021	Α
I _{TSM}	Peak non-repetitive surge t _p =10ms, V _{rm} =0.6V _{RRM} , (note 5)	43.2	kA
I _{TSM2}	Peak non-repetitive surge t _p ≠10ms, V _m ≤10V, (note 5)	47.5	kA
I ² t	I ² t capacity for fusing to=10ms, V _{rn} =0.6V _{RRM} , (note 5)	9.33×10 ⁶	A ² s
I ² t	I ² t capacity for fusing t _p =10ms, V _{rm} ≤10V, (note 5)	11.28×10 ⁶	A ² s
	Critical rate of rise of on state current (continuous, 50Hz), (Note 6)	250	
(di/dt) _{cr}	Critical rate of rise of on-state current (repetitive, 60s), (Note 6)	500	A/µs
	Critical rate of rise of on-state current (non-repetitive), (Note 6)	1000	
V_{RGM}	Peak reverse gate voltage	5	V
P _{G(AV)}	Mean forward gate power	5	W
P _{GM}	Peak forward gate power	50	W
Tjop	Operating temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-40 to +150	°C

Notes:

- De-rating factor of 0.13% per °C is applicable for T_j below 25°C.
 Double side cooled, single phase; 50Hz, 180° half-sinewave.
- Single side cooled, single phase; 50Hz, 180° half-sinewave.
- 4) Double side cooled.
- 5) Half-sinewave, 125°C T_j initial.
- 6) $V_D=67\% \ V_{DRM}, \ I_{FG}=2A, \ t_r\leq 0.5 \mu s, \ T_{case}=125 ^{\circ}C.$

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
.,	Mariana and an ataka and the an	-	-	2.35	I _{TM} =5000A	V
V_{TM}	Maximum peak on-state voltage	-	-	3.44	I _{TM} =10500A	V
V _{T0}	Threshold voltage	-	-	1.375		V
r _T	Slope resistance	-	-	0.196		mΩ
(dv/dt) _{cr}	Critical rate of rise of off-state voltage	1000	-	-	V _D =80% V _{DRM} , linear ramp, gate o/c	V/μs
I _{DRM}	Peak off-state current	-	-	300	Rated V _{DRM}	mA
I _{RRM}	Peak reverse current	-	-	300	Rated VRRM	mA
V_{GT}	Gate trigger voltage	-	-	3.0	T _i =25°C V _D =10V, I _T =3A	V
lgт	Gate trigger current	-	_	€ 00 <	V _D =10V, I _T =3A	mA
V_{GD}	Gate non-trigger voltage	-	-	0.25	Rated V _{DRM}	V
lΗ	Holding current	-	-	1000	Tj=25°C	mA
t _{gd}	Gate-controlled turn-on delay time	-	1.5	3.0	V _D =67% V _{DRM} , I _T =6000A, di/dt=10A/μs,	μs
t_{gt}	Turn-on time	-	3.0	6.0	I _{FG} =2A, t _r =0.5μs, T _j =25°C	μs
Qrr	Recovered charge	-	8000	\sim λ	^	μC
Q _{ra}	Recovered charge, 50% Chord	-	5500	6500	I _{TM} =4000A, t _p =2000μs, di/dt=10A/μs,	μC
I _{rm}	Reverse recovery current	-	230		√ _r =100V	Α
t _{rr}	Reverse recovery time	- /	4/8	$\frac{1}{\sqrt{1-x}}$		μs
		- (800) -	I _{TM} =4000A, t _p =2000μs, di/dt=10A/μs, V _r =100V, V _{dr} =80%V _{DRM} , dV _{dr} /dt=20V/μs	
t_q	Turn-off time		1600		I _{TM} =4000A, t _p =2000μs, di/dt=10A/μs,	μs
.	The second secon		1000	0.0055	V _r =100V, V _{dr} =80%V _{DRM} , dV _{dr} /dt=200V/μs	14004
R _{thJC}	Thermal resistance, junction to case		-	0.0055	Double side cooled	K/W
R_{thJK}	Thermal resistance, junction to heatsink	(-)	✓	0.0065	Double side cooled	K/W
			-	0.0130	Single side cooled	K/W
F	Mounting force	81/	-	99	Note 2	kN
W_t	Weight / / /	7	2.8	-		kg

Notes:-

1) Unless otherwise indicated T_j=125°C

2) For other clamp forces consult factory.

Notes on rupture rated packages.

This product is available with a non-rupture rated package.

For additional details on these products, please consult factory.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade	$egin{array}{c} egin{array}{c} egin{array}$	V _{RSM} V	V _D /V _R DC
45	4500	4600	2100
46	4600	4700	2120
48	4800	4900	2160
50	5000	5100	2200
52	5200	5300 / ,	2240

2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for $\sqrt[r]{}$ below 25°C.

4.0 Repetitive dv/dt

Standard dv/dt is 1000V/µs.

5.0 Frequency Ratings

The curves illustrated in figures 17 & 18 are for guidance only and are superseded by the maximum ratings shown on page 1. For operation above line frequency, please consult the factory for assistance.

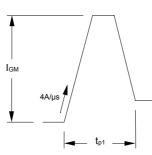
6.0 Snubber Components

When selecting snubber components, care must be taken not to use excessively large values of snubber capacitor or excessively small values of snubber resistor. Such excessive component values may lead to device damage due to the large resultant values of snubber discharge current. If required, please consult the factory for assistance.

7.0 Rate of rise of on-state current

The maximum un-primed rate of rise of on-state current must not exceed 400A/µs at any time during turn-on on a non-repetitive basis. For repetitive performance, the on-state rate of rise of current must not exceed 200A/µs at any time during turn-on. Note that these values of rate of rise of current apply to the total device current including that from any local snubber network.

8.0 Square wave frequency ratings


These ratings are given for load component rate of rise of on-state current of 50A/µs.

9.0 Duty cycle lines

The 100% duty cycle is represented on the frequency ratings by a straight line. Other duties can be included as parallel to the first.

10.0 Gate Drive

The nominal requirement for a typical gate drive is illustrated below. An open circuit voltage of at least 30V is assumed. This gate drive must be applied when using the full di/dt capability of the device.

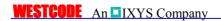
The magnitude of I_{GM} should be between five and ten times I_{GT} , which is shown on page 2. Its duration (t_{p1}) should be 20µs or sufficient to allow the anode current to reach ten times I_L , whichever is greater. Otherwise, an increase in pulse current could be needed to supply the necessary charge to trigger. The 'back-porch' current I_G should remain flowing for the same duration as the anode current and have a magnitude in the order of 1.5 times I_{GT}.

11.0 Computer Modelling Parameters

11.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_{T0} + \sqrt{{V_{T0}}^2 + 4 \cdot ff^2 \cdot r_T \cdot W_{AV}}}{2 \cdot ff^2 \cdot r_T}$$

 R_{th} = Supplementary thermal impedance, see table below and


ff = Form factor, see table below.

$I = \frac{-V_{T0} + \sqrt{1}}{2}$	$\left V_{T0}^{2} + 4 \cdot f f^{2} \cdot r_{T} \right $	$\overline{W_{AV}}$	$W_{AV} = \frac{\Delta T}{R_{d}}$
I_{AV} –	$2 \cdot ff^2 \cdot r_T$	and:	$\Delta T = T_{j \max} - T_{K}$
Where V_{T0} =1.375V,	r_T =0.196m Ω ,		

Supplementary Thermal Impedance							
Conduction Angle	30°	≥ 60°	90°	120°	180°	270°	d.c.
Square wave Double Side Copled	0.00747	0.00707	0.00698	0.00689	0.00673	0.00652	0.0065
Square wave Single Side Cooled	0.0137	0.01359	0.01349	0.0134	0.01323	0.01301	0.013
Sine wave Double Side Cooled	0.00709	0.00697	0.00687	0.00678	0.00654		
Sine wave Single Side Cooled	0.0136	0.01348	0.01337	0.01328	0.01303		

		Form F	actors				
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave	3.464	2.449	2	1.732	1.414	1.149	1
Sine wave	3.98	2.778	2.22	1.879	1.57		

11.2 Calculating V_T using ABCD Coefficients

The on-state characteristic I_T vs. V_T , on page 6 is represented in two ways;

- (i) the well established V_{T0} and r_T tangent used for rating purposes and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_f in terms of I_T given below:

$$V_T = A + B \cdot \ln(I_T) + C \cdot I_T + D \cdot \sqrt{I_T}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for V_T agree with the true device characteristic over a current range, which is limited to that plotted.

	25°C Coefficients		125°C Coefficients
Α	1.2360916	Α	1.8312616
В	0.1436956	В	-0.1132993
С	2.127247×10 ⁻⁴	С	1.470865×10 ⁻⁴
D	-0.02214526	D	7.046997×10 ⁻³

11.3 D.C. Thermal Impedance Calculation

$$r_t = \sum_{p=1}^{p=n} r_p / \left(\frac{1}{1 - e^{\tau_p}} \right)$$

Where p = 1 to n, n is the number of terms in the series and:

- t = Duration of heating pulse in seconds.
- r, = Thermal resistance at time t.
- r_p = Amplitude of p_{th} term.
- τ_p = Time Constant of r_{th} term.

The coefficients for this device are shown in the tables below:

	D.C. Double Side Cooled					
Term	1 \	2	3	4		
r_p	3.424745×10 ⁻³	1.745273×10 ⁻³	8.532017×10 ⁻⁴	3.457329×10 ⁻⁴		
$ au_{D}$	1.125391	0.1878348	0.02788979	8.430889×10 ⁻³		

D.C. Single Side Cooled						
Term 2 3 4						
r_p	8 375269×10 ³	2.518437×10 ⁻³	1.193758×10 ⁻³	7.45432×10 ⁻⁴		
Ιp	8.9 2984 5	0.4711304	0.08221244	0.01221961		

Curves

Figure 1 - On-state characteristics of Limit device

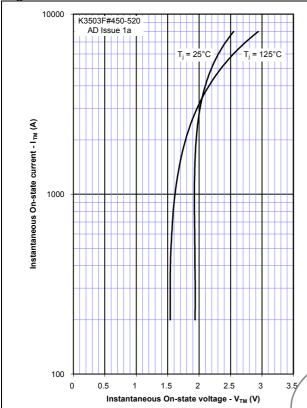
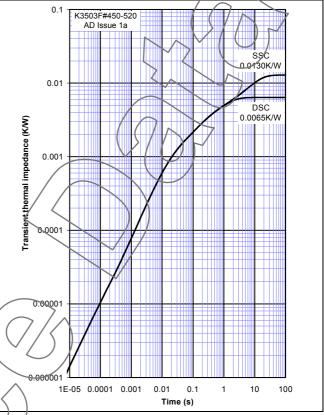



Figure 2 - Transient thermal impedance K3503F#450-520

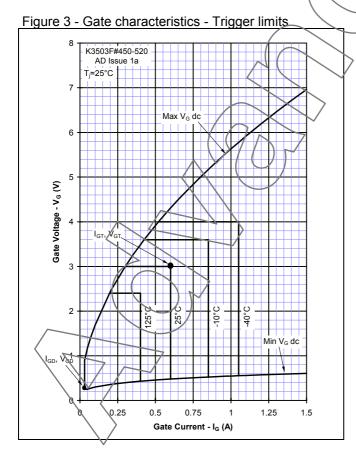
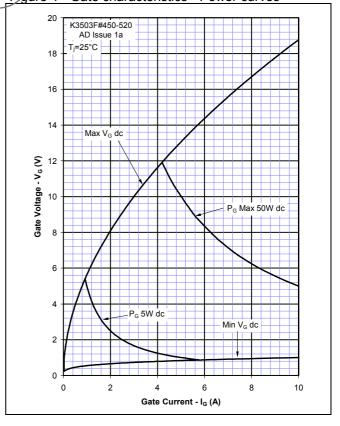
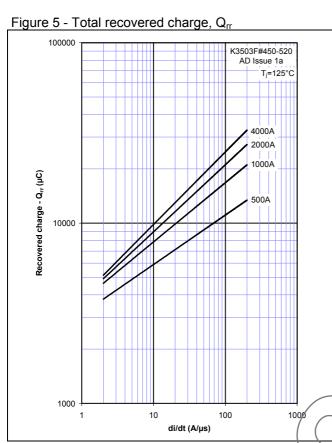
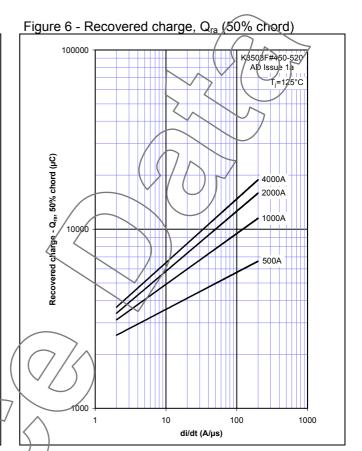
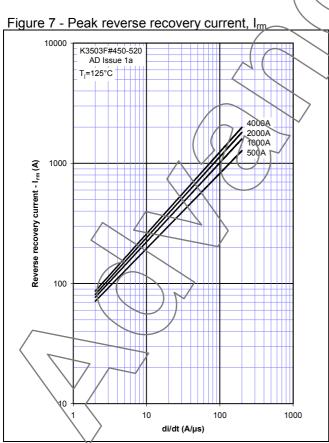






Figure 4 - Gate characteristics - Power curves

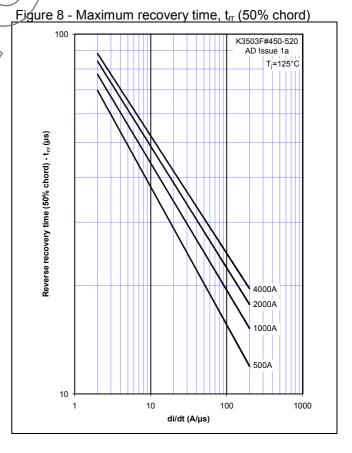


Figure 9 – On-state current vs. Power dissipation – Double Side Cooled (Sine wave)

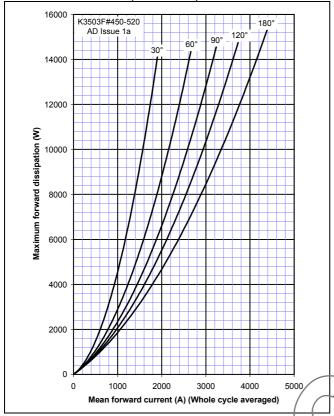


Figure 11 – On-state current vs. Power dissipation Double Side Cooled (Square wave)

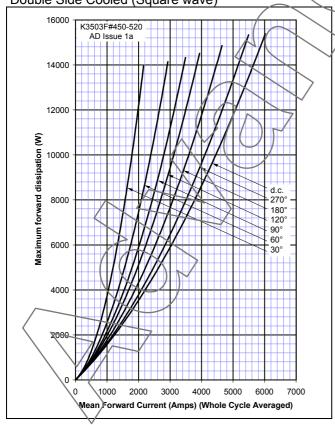


Figure 10 – On-state current vs. Heatsink temperature - Double Side Cooled (Sine wave)

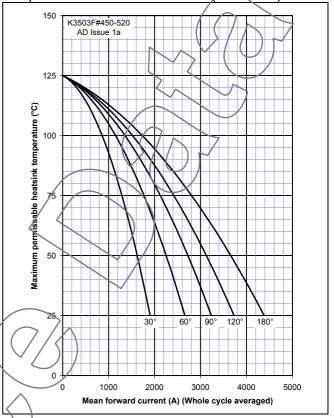


Figure 12 – On-state current vs. Heatsink temperature – Double Side Cooled (Square wave)

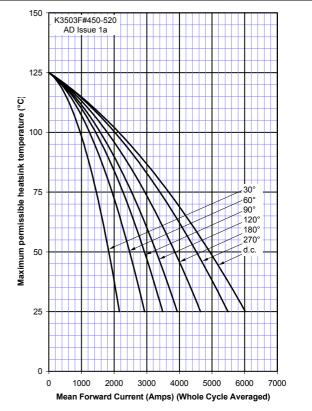


Figure 13 – On-state current vs. Power dissipation – Single Side Cooled (Sine wave)

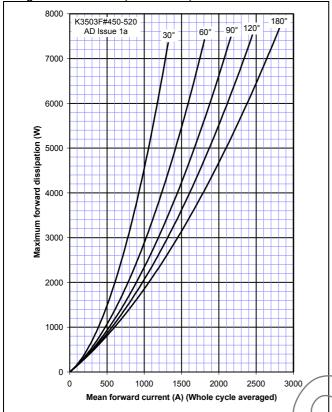


Figure 15 – On-state current vs. Power dissipation Single Side Cooled (Square wave)

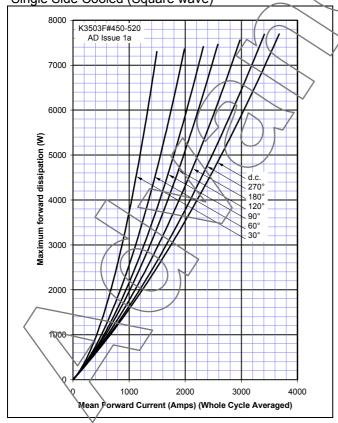


Figure 14 – On-state current vs. Heatsink temperature – Single Side Cooled (Sine wave)

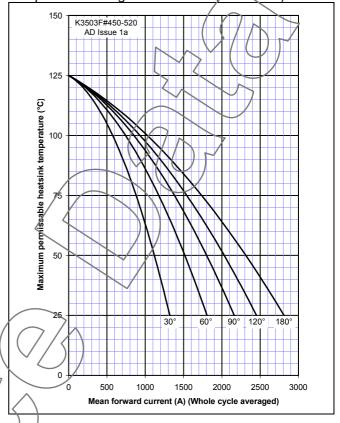
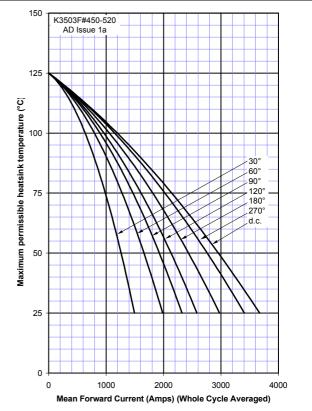
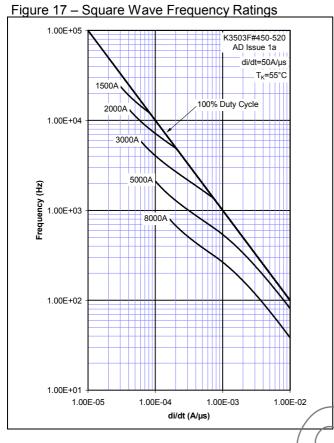
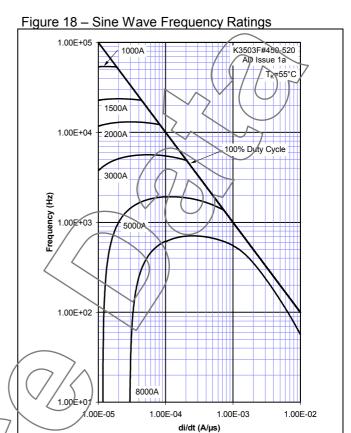
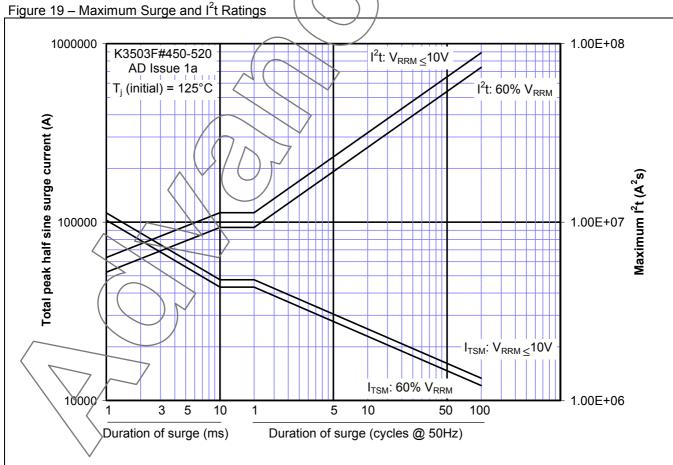
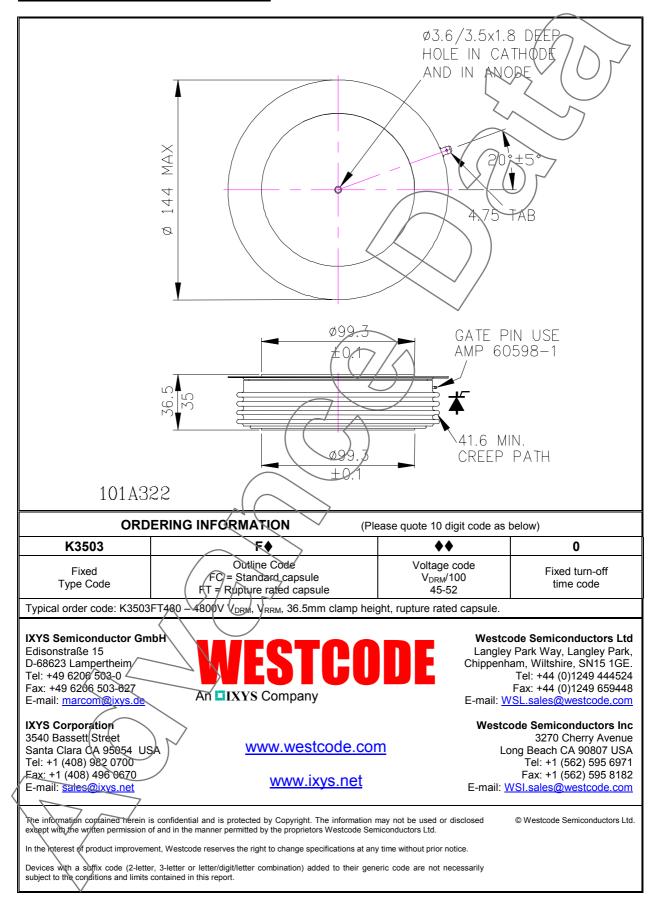







Figure 16 – On-state current vs. Heatsink temperature – Single Side Cooled (Square wave)



Outline Drawing & Ordering Information

