

Date: - 4 Aug, 2005

Data Sheet Issue:

Provisional Data

Medium Voltage Thyristo

Types K3362T#360 to K33627

Development Type No.: KX091TC420

Absolute Maximum Ratings

	VOLTAGE RATINGS		MAXIMUM LIMITS	UNITS
V_{DRM}	Repetitive peak off-state voltage, (note 1)	I	3600-4200	V
V_{DSM}	Non-repetitive peak off-state voltage, (note 1)		3600-4200	V
V_{RRM}	Repetitive peak reverse voltage, (note 1)		3600-4200	V
V_{RSM}	Non-repetitive peak reverse voltage, (note 1)		3700-4300	V
-				

	OTHER RATINGS		MAXIMUM LIMITS	UNITS
$I_{T(AV)M}$	Maximum average on-state current, T _{sink} 55 C, (no	te 2∖	3362	Α
$I_{T(AV)M}$	Maximum average on-state current. Tsink=85°C, (no	t)e 2)	2329	Α
$I_{T(AV)M}$	Maximum average on-state current. Isink=85°C, (no	te⁄3)	1429	Α
I _{T(RMS)}	Nominal RMS on-state current, V _{sink} =25°C, (note 2)		6604	Α
$I_{T(d.c.)}$	D.C. on-state current, T _{sink} =25%, (note 4)		5804	Α
I _{TSM}	Peak non-repetitive surge t _p =10ms, V _m =60%V _{RRM} ,	39.5	kA	
I _{TSM2}	Peak non-repetitive surge tp=10ms, Vm2=10V, (note	43.4	kA	
I ² t	I^2 t capacity for fusing t_p =10ms, V_{rm} =60% V_{RRM} , (note	7.80×10 ⁶	A ² s	
I ² t	I ² t capacity for fusing t _p =10/ns, V _{rn} ≤10/V, (note 5)	9.42×10 ⁶	A^2s	
	\wedge (\circ)	continuous, 50Hz	150	A/µs
(di/dt) _{cr}	Critical rate of rise of on-state current, (Note 6)	repetitive, 50Hz, 60s	300	A/µs
		non-repetitive	600	A/µs
V_{RGM}	Peak reverse gate voltage		5	V
$P_{G(AV)}$	Mean forward gate power	5	W	
Рсм	Peak forward gate power	50	W	
T _{j op}	Operating temperature range	-40 to +125	°C	
T _{stg}	Storage temperature range	-40 to +150	°C	

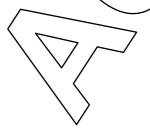
De rating factor of 0.13% per °C is applicable for T_j below 25°C. Double side cooled, single phase; 50Hz, 180° half-sinewave. Single side cooled, single phase; 50Hz, 180° half-sinewave.

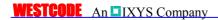
- Double side cooled.
- Half-sinewave, 125°C T_j initial.
- $V_D=67$ V_{DRM} , $I_{FG}=2A$, $t_r \le 0.5 \mu s$, $T_{case}=125$ °C.

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
V _{TM}	Maximum peak on-state voltage	-	-	1.55	I _{TM} =3000A	V
V_{TM}	Maximum peak on-state voltage	-	_	2.57	I _{TM} =9000A	V
V_{T0}	Threshold voltage	-	_	1.052	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V
r _T	Slope resistance	-	_	0.168		mΩ
(dv/dt) _{cr}	Critical rate of rise of off-state voltage	1000	-	-	V _D =80% V _{DRM} linear ramp, gate o/c	V/µs
I_{DRM}	Peak off-state current	-	_	150	Rated V _{DRM}	mA
I_{RRM}	Peak reverse current	-	_	150	Rated VRMM	mA
V _{tr}	On-state recovery voltage	-	18	-/	=2×I _{T(XV,M} , t _p =10ms, T _{case} =25°C	V
V _{GT}	Gate trigger voltage	-	-	3 .0 <		V
I_{GT}	Gate trigger current	-	-	600	N=25°C	mA
V_{GD}	Gate non-trigger voltage	-	-	0.25	Rated V _{DRM}	V
I _H	Holding current	-	-	1000	T _j =25°C	mA
t _{gd}	Gate-controlled turn-on delay time		1.0	2 .Q	V _D =60% V _{DRM} , I _T =2000A, di/dt=10A/μs,	μs
t_{gt}	Turn-on time	-	3.5	5 .0	J _{FG} =2A, t _r =0.5μs, T _j =25°C	μs
Qrr	Recovered charge	-	12000	//		μC
Q _{ra}	Recovered charge, 50% Chord	-	7400	8400	/ _{TM} =4000A, t _p =2000μs, di/dt=10A/μs,	μC
I _{rm}	Reverse recovery current	- /	2/5	\sum_{-}	V _r =100V	Α
t _{rr}	Reverse recovery time	- ((54 <) -		μs
t _q	Turn-off time	_ \ 	875 1400	<i>]</i> - -	$\begin{array}{l} I_{TM} \!$	μs
				0.0085	V _r =100V, V _{dr} =80%V _{DRM} , dV _{dr} /dt=200V/µs Double side cooled	K/W
R_{thJK}	Thermal resistance, junction to heatsunk			0.0003	Single side cooled	K/W
F	Mounting force	63	-	77		kN
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.23	-	Outlines TC & TT	
Wt	Weight	\ \ -	1.70	-	Outlines TD & TV	kg

Notes:-


1) Unless otherwise indicated Ti


2) For other clamp forces consult factor

Notes on rupture rated packages.

This product is available with a non-rupture rated package.

For additional details on these products, please consult factory.

Notes on Ratings and Characteristics

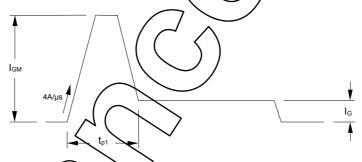
1.0 Voltage Grade Table

-			
Voltage Grade	$egin{array}{c} egin{array}{c} egin{array}$	V _{RSM} V	
3600	3600	3700	2\60
3800	3800	3900	2280
4000	4000	4100	2400
4200	4200	4300	2520

2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by \$ales/Production.

3.0 De-rating Factor


A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_i below 25°C.

4.0 Repetitive dv/dt

Standard dv/dt is 1000V/µs.

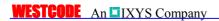
5.0 Gate Drive

The nominal requirement for a typical gate drive is illustrated below. An open circuit voltage of at least 30V is assumed. This gate drive must be applied when using the full di/pt capability of the device.

The magnitude of I_{GM} should be between five and ten times I_{GT} , which is shown on page 2. Its duration (t_{p1}) should be 20µs or sufficient to allow the anode current to reach ten times I_L , whichever is greater. Otherwise, an increase in pulse current could be needed to supply the necessary charge to trigger. The 'back-porch' current I_G should remain flowing for the same duration as the anode current and have a magnitude in the order of 1.5 times I_{GT} .

6.0 Frequency Ratings

The curves illustrated in figures/17 & 18 are for guidance only and are superseded by the maximum ratings shown on page 1. For operation above line frequency, please consult the factory for assistance.

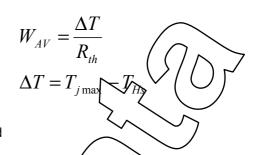

7.0 Rate of rise of on-state current

The maximum un-primed rate of rise of on-state current must not exceed 1000A/µs at any time during turn-on on a non-repetitive basis. For repetitive performance, the on-state rate of rise of current must not exceed 500A/µs at any time during turn-on. Note that these values of rate of rise of current apply to the total device current including that from any local snubber network.

8.0 Square wave frequency ratings

These ratings are given for load component rate of rise of on-state current of 50A/µs.

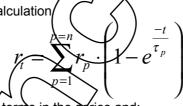
9.0 Computer Modelling Parameters


9.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_{T0} + \sqrt{{V_{T0}}^2 + 4 \cdot ff^2 \cdot r_T \cdot W_{AV}}}{2 \cdot ff^2 \cdot r_T}$$

and:

Where V_{T0} =1.052V, r_{T} =0.168 Ω ,


 R_{th} = Supplementary thermal impedance, see table below and ff = Form factor, see table below.

Supplementary Thermal Impedance							
30°	60°	90°/	120°	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	270°	d.c.	
0.00923	0.00915	0.09907/	0.00899	Q .00884	0.00864	0.0085	
0.01801	0.01792	0.01783	0.01775)	0)01760	0.01739	0.0170	
0.00917	0.00906	0.00898	0.00890	0.00867			
0.01794	0.01782	0.01773	0:01765/	0.01742			
	30° 0.00923 0.01801 0.00917	30° 60° 0.00923 0.00915 0.01801 0.01792 0.00917 0.00906	30° 60° 90° 0.00923 0.00915 0.00907 0.01801 0.01792 0.01783 0.00917 0.00906 0.00898	30° 60° 90° 120° 0.00923 0.00915 0.00907 0.00899 0.01801 0.01792 0.01783 0.01775 0.00917 0.00906 0.00898 0.00899	Supplementary Thermal Impedance 30° 60° 90° 120° 180° 0.00923 0.00915 0.00907 0.00899 0.00884 0.01801 0.01792 0.01783 0.01775 0.01760 0.00917 0.00906 0.00898 0.00899 0.00867	Supplementary Thermal Impedance 30° 60° 90° 120° 180° 270° 0.00923 0.00915 0.00907 0.00899 0.00884 0.00864 0.01801 0.01792 0.01783 0.01775 0.01760 0.01739 0.00917 0.00906 0.00898 0.00890 0.00867	

Form Factors							
Conduction Angle	30°	60°	/ 2 00 5 /	120°	180°	270°	d.c.
Square wave	3.464	2.449	2/	1.732	1.414	1.149	1
Sine wave	3.98	2.778	2.22	1.879	1.57		

9.2 D.C. Thermal Impedance Calculation

Where p = 1 to n, n is the number of terms in the series and:

t = Duration of heating pulse in seconds.

r, = Thermal resistance at time t.

 r_p = Amplitude of p_{th} term r_p = Time Constant of r_{th} term

The coefficients for this device are shown in the tables below:

	D.C. Double Side Cooled						
\wedge	Term	<u></u>	2	3			
	rρ	4.934536×10 ⁻³	2.693673×10 ⁻³	8.295909×10 ⁻⁴			
	τ_{ρ}	0.8203239	0.1170407	0.0170874			

\sim	/		D.C. Single Side Cooled			
	4	1	2	3	4	
	\f_\rac{1}{2}	0.01011545	3.424005×10 ⁻³	2.491583×10 ⁻³	1.174174×10 ⁻³	
\	$ au_{ ho}$	5.990464	1.10841	0.140561	0.02103968	

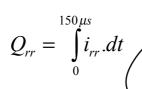
culating V_⊤ using ABCD Coefficients

The on-state characteristic I_T vs. V_T , on page 6 is represented in two ways;

- (i) the well established V_{T0} and r_T tangent used for rating purposes and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_T in terms of I_T given below:

 $V_T = A + B \cdot \ln(I_T) + C \cdot I_T + D \cdot \sqrt{I}$

The constants, derived by curve fitting software, are given below for the hot and cold characteristics. The resulting values for V_T agree with the true device characteristic over a current range, which is limited to that plotted.


	25°C Coefficients		125°C Coefficients
Α	1.89940596	Α	0.99286596
В	-0.162877	В	-0.034288
С	7×10 ⁻⁵	С	1.19×10 ⁴
D	0.01303	D	8.666 ×10 ⁻⁷

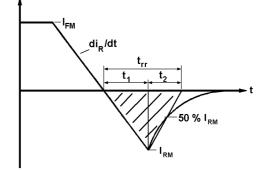
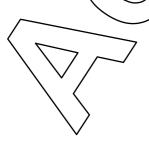
10.0 Snubber Components

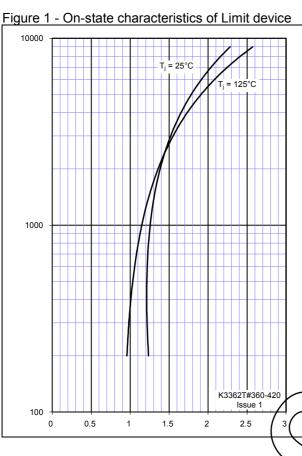
When selecting snubber components, care must be taken not to use excessively large values of snubber capacitor or excessively small values of snubber resistor. Such excessive component values may lead to device damage due to the large resultant values of snubber discharge current. If required, please consult the factory for assistance.

11.0 Reverse recovery ratings

- (i) Q_{ra} is based on 50% I_{rm} chord as shown in Fig.
- (ii) Q_{rr} is based on a 150μs integration time i.e.

(iii) K Factor


Fig. 1

12.0 Duty cycle lines

The 100% duty cycle is represented on the frequency ratings by a straight line. Other duties can be included as parallel to the first.

Curves

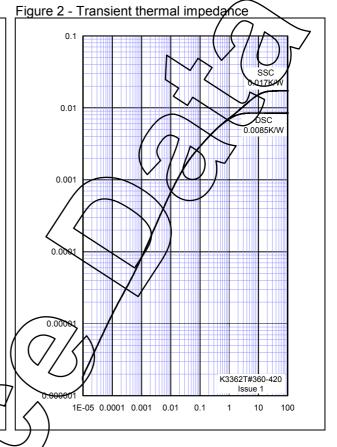
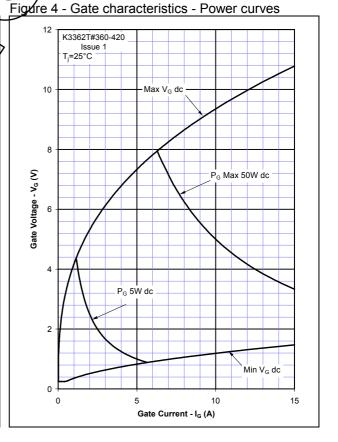



Figure 3 - Gate characteristics - Trigger limits

6 K3362T#360-420 Issue 1
T=25°C

5 Max V, dc

4 Property of the property of

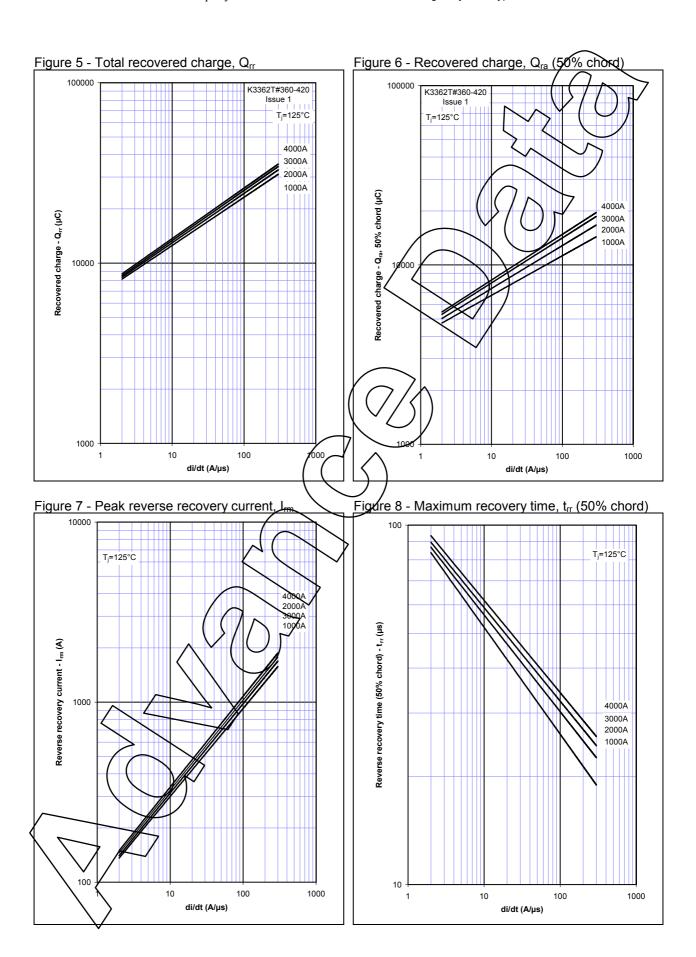


Figure 9 – On-state current vs. Power dissipation – Double Side Cooled (Sine wave)

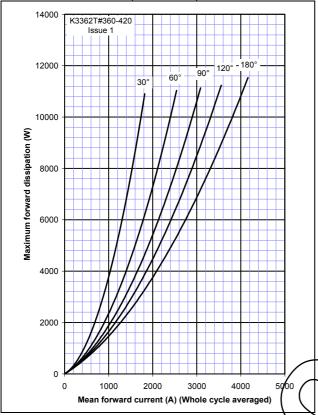


Figure 10 – On-state current vs. Heatsink

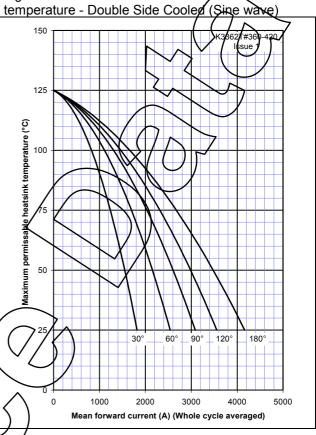


Figure 11 - On-state current vs. Power dissipation

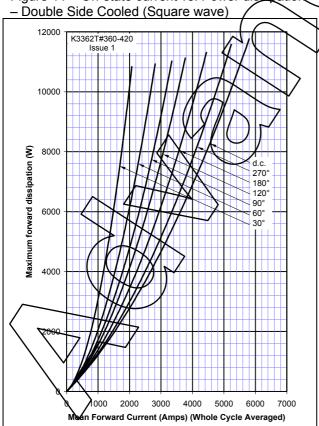


Figure 12 – On-state current vs. Heatsink

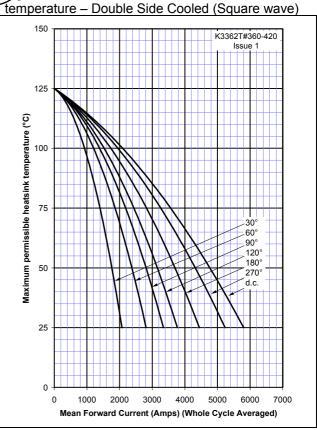


Figure 13 – On-state current vs. Power dissipation – Single Side Cooled (Sine wave)

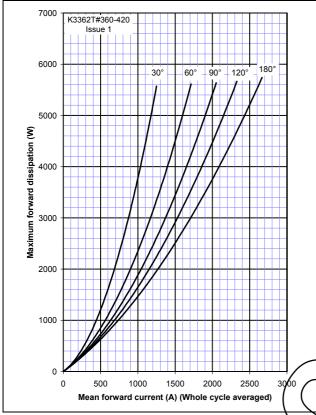


Figure 14 – On-state current vs. Heatsink temperature – Single Side Cooled (Sine wave)

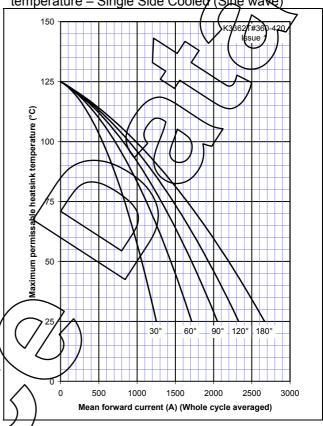
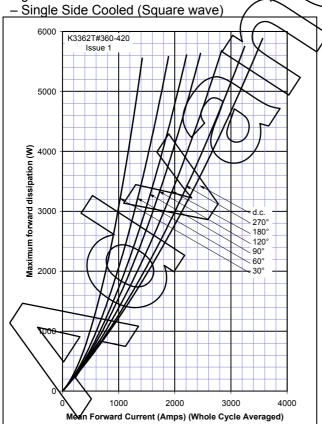
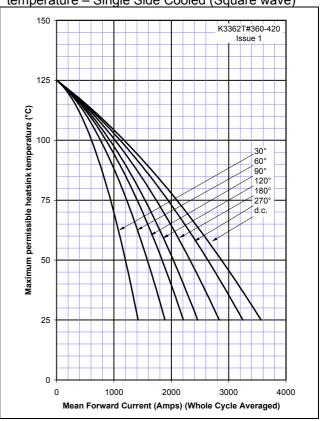
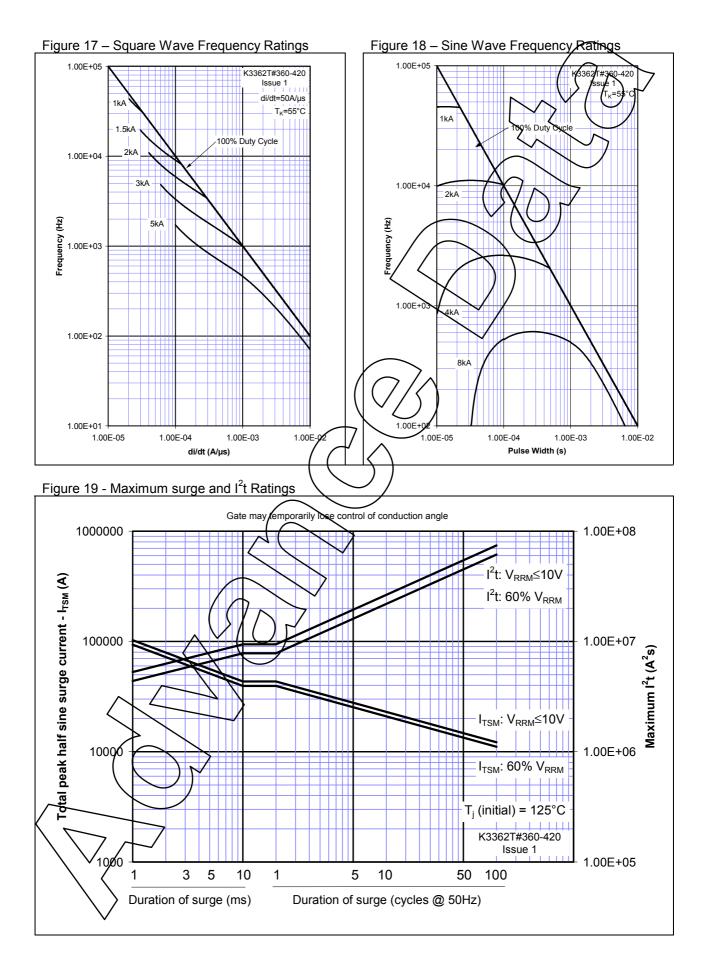
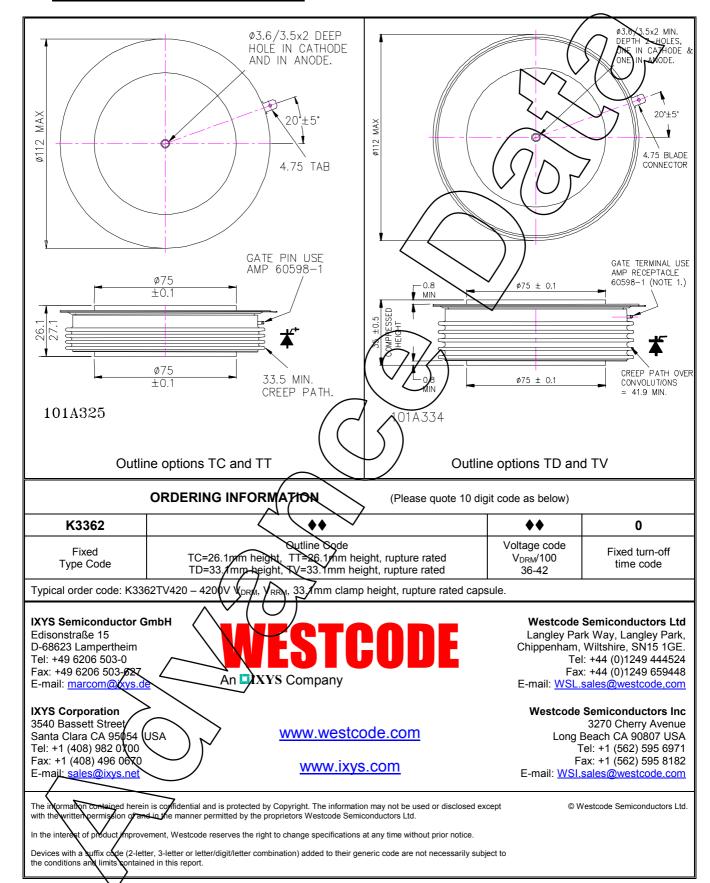


Figure 15 - On-state current vs. Power dissipation


Figure 16 – On-state current vs. Heatsink temperature – Single Side Cooled (Square wave)

Outline Drawing & Ordering Information

