


## Quad power amplifier with integrated step-up converter

#### **Features**

- Multipower BCD technology
- DMOS power output
- Non-switching high efficiency amplifier
- Switching high efficiency voltage converter
- High output power capability:
  - $-4 x 41 W max @ V_s = 14.4 V$
  - $-4 \times 59 \text{ W} @ V_s = 14.4 \text{ V} \text{ and PWM} = 17.5 \text{ V}$
- Full I<sup>2</sup>C bus driving:
  - Standby
  - Independent front/rear soft play/mute
  - Selectable gain 26 dB 12 dB (for low noise line output function)
  - High efficiency enable/disable
  - Voltage converter enable/disable
  - Regulated voltage selection
  - Switching frequency selection
- Hardware mute function
- Full fault protection
- DC offset detection
- Four independent short circuit protection
- Clipping detector with selectable threshold (1 % / 10 %) via I<sup>2</sup>C bus



## **Description**

The TDA7565 is a new BCD technology quad bridge type of car radio amplifier in Flexiwatt27 package specially intended for car radio applications.

Thanks to the DMOS output stage the TDA7565 has a very low distortion allowing a clear powerful sound.

The built-in voltage converter control block assures a very high output power with an extremely low number of added components.

Furthermore, the converter makes the TDA7565 compliant to the most recent OEM specifications for low voltage operation (so called 'start-stop' battery profile during engine stop), helping car manufacturers to reduce the overall emissions and thus contributing to environment protection.

Table 1. Device summary

| Order code | Package     | Packing |
|------------|-------------|---------|
| TDA7565    | Flexiwatt27 | Tube    |

Contents TDA7565

# **Contents**

| 1 | Bloc               | k and pin connection diagrams5 |
|---|--------------------|--------------------------------|
| 2 | Elec               | trical specification 6         |
|   | 2.1                | Absolute maximum ratings 6     |
|   | 2.2                | Thermal data                   |
|   | 2.3                | Electrical characteristics 6   |
| 3 | I <sup>2</sup> C k | ous interface                  |
|   | 3.1                | Data validity                  |
|   | 3.2                | Start and stop conditions      |
|   | 3.3                | Byte format                    |
|   | 3.4                | Acknowledge                    |
| 4 | Soft               | ware specifications12          |
| 5 | Exar               | mples of bytes sequence        |
| 6 | Low                | voltage "start-stop" operation |
| 7 | Pack               | rage information               |
| 8 | Revi               | sion history                   |

TDA7565 List of tables

# List of tables

| Table 1.  | Device summary             | 1 |
|-----------|----------------------------|---|
| Table 2.  | Absolute maximum ratings   | 6 |
| Table 3.  | Thermal data               | 6 |
| Table 4.  | Electrical characteristics | 6 |
| Table 5.  | Chip address               |   |
|           | IB11                       |   |
|           | IB21                       |   |
|           | DB11                       |   |
|           | DB21                       |   |
|           | DB31                       |   |
| Table 11. | DB41                       | 4 |
| Table 12. | Document revision history  | 8 |

List of figures TDA7565

# **List of figures**

| Figure 1. | Block diagram                                                 | . 5 |
|-----------|---------------------------------------------------------------|-----|
| Figure 2. | Pin connection (top view)                                     | . 5 |
| Figure 3. | Demoboard schematic                                           | . 9 |
| Figure 4. | Data validity on the I2C bus                                  | 10  |
| Figure 5. | Timing diagram on the I2C bus                                 | 11  |
| Figure 6. | Acknowledge on the I2C bus                                    | 11  |
| Figure 7. | Worst case condition for a start-stop system diagram          | 16  |
| Figure 8. | Flexiwatt27 (vertical) mechanical data and package dimensions | 17  |

# 1 Block and pin connection diagrams

Figure 1. Block diagram

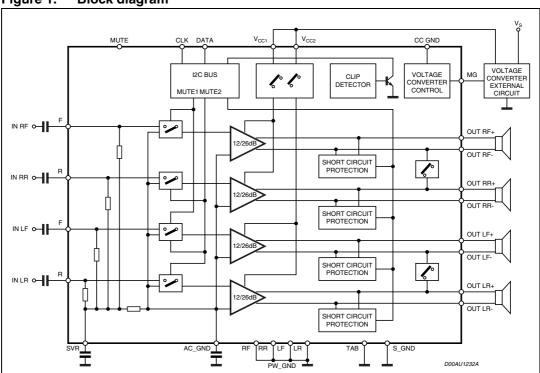
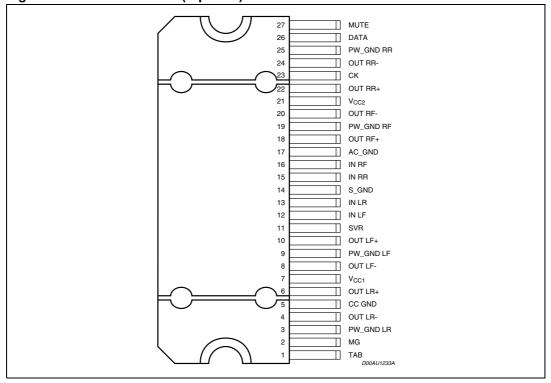




Figure 2. Pin connection (top view)



# 2 Electrical specification

## 2.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

| Symbol                            | Parameter                                       | Value      | Unit |
|-----------------------------------|-------------------------------------------------|------------|------|
| V <sub>opc OFF</sub>              | Operating supply voltage, converter off         | 18         | V    |
| V <sub>opc ON</sub>               | Operating supply voltage, converter on          | 25         | V    |
| V <sub>S</sub>                    | DC supply voltage                               | 28         | V    |
| V <sub>peak</sub>                 | Peak supply voltage (for t = 50 ms)             | 50         | ٧    |
| V <sub>CK</sub>                   | CK pin voltage                                  | 6          | V    |
| V <sub>DATA</sub>                 | Data pin voltage                                | 6          | V    |
| I <sub>O</sub>                    | Output peak current (not repetitive t = 100 µs) | 8          | Α    |
| Io                                | Output peak current (repetitive f > 10 Hz)      | 6          | Α    |
| P <sub>tot</sub>                  | Power dissipation T <sub>case</sub> = 70 °C     | 80         | W    |
| T <sub>stg</sub> , T <sub>j</sub> | Storage and junction temperature                | -55 to 150 | °C   |

## 2.2 Thermal data

Table 3. Thermal data

| Symbol                 | Description                              | Value | Unit |
|------------------------|------------------------------------------|-------|------|
| R <sub>th j-case</sub> | Thermal resistance junction to case Max. | 1     | °C/W |

## 2.3 Electrical characteristics

Refer to the test circuit,  $V_S$  = 14.4 V;  $R_L$  = 4  $\Omega$ ; f = 1 kHz; voltage converter disabled (VC<sub>Off</sub>);  $T_{amb}$  = 25 °C; unless otherwise specified.

Table 4. Electrical characteristics

| Symbol         | Parameter                                         | Test condition           | Min.     | Тур.     | Max. | Unit   |
|----------------|---------------------------------------------------|--------------------------|----------|----------|------|--------|
| Power an       | Power amplifier                                   |                          |          |          |      |        |
| Vs             | Supply voltage range                              | -                        | 8        | -        | 18   | V      |
| I <sub>d</sub> | Total quiescent drain current                     | -                        | -        | 250      | 300  | mA     |
| I <sub>d</sub> | Total quiescent drain current (VC <sub>on</sub> ) | -                        | -        | 350      | -    | mA     |
|                | Output power                                      | Max power <sup>(1)</sup> | -        | 41       | -    | W      |
| P <sub>O</sub> | (VC <sub>off</sub> )<br>V = 14.4 V                | THD = 10 %<br>THD = 1 %  | 22<br>18 | 27<br>22 | -    | W<br>W |

Table 4. Electrical characteristics (continued)

| Symbol            | Parameter                                     | Test condition                                                                    | Min.     | Тур.                | Max. | Unit        |
|-------------------|-----------------------------------------------|-----------------------------------------------------------------------------------|----------|---------------------|------|-------------|
|                   | Output power                                  | Max power <sup>(1)</sup>                                                          | -        | 59                  | -    | W           |
| P <sub>O</sub>    | (VC <sub>on</sub> )<br>V = 14.4V, PWM = 17.5V | THD = 10 %<br>THD = 1 %                                                           | 32<br>25 | 39<br>31            | -    | W<br>W      |
| THD               | Total harmonic distortion                     | $P_O$ = 1 W to 12 W; STDmode<br>HE mode; $P_O$ = 1-2 W<br>HE mode; $P_O$ = 4-12 W | -        | 0.03<br>0.03<br>0.1 | 0.1  | %<br>%<br>% |
|                   |                                               | P <sub>O</sub> = 1-12 W, f = 10 kHz                                               | -        | 0.15                | 0.5  | %           |
| C <sub>T</sub>    | Cross talk                                    | $f = 1 \text{ kHz to } 10 \text{ kHz}, R_G = 600 \Omega$                          | 50       | 55                  | -    | dB          |
| R <sub>IN</sub>   | Input impedance                               | -                                                                                 | 60       | 100                 | 130  | KΩ          |
| G <sub>V1</sub>   | Voltage gain 1                                | -                                                                                 | 25.5     | 26                  | 26.5 | dB          |
| ∆G <sub>V1</sub>  | Voltage gain match 1                          | -                                                                                 | -1       | -                   | 1    | dB          |
| G <sub>V2</sub>   | Voltage gain 2                                | -                                                                                 | 11.5     | 12                  | 12.5 | dB          |
| ∆G <sub>V2</sub>  | Voltage gain match 2                          | -                                                                                 | -1       | -                   | 1    | dB          |
| E <sub>IN1</sub>  | Output noise voltage 1                        | $R_g = 600 \ \Omega; \ G_V = 26 \ dB$ filter 20 Hz to 22 kHz                      | -        | 60                  | 70   | μV          |
| E <sub>IN2</sub>  | Output noise voltage 2                        | $R_g = 600 \ \Omega; \ G_V = 26 \ dB$ filter 20 Hz to 12 kHz                      | -        | 15                  | 25   | μV          |
| SVR               | Supply voltage rejection                      | $f$ = 100 Hz to 10 kHz; $V_r$ = 1V pk; $R_g$ = 600 $\Omega$                       | 50       | 60                  | -    | dB          |
| BW                | Power bandwidth                               | (-3 dB)                                                                           | 75       | -                   | -    | KHz         |
| A <sub>SB</sub>   | Standby attenuation                           | -                                                                                 | 70       | 100                 |      | dB          |
| I <sub>SB</sub>   | Standby current                               | -                                                                                 | -        | -                   | 50   | μΑ          |
| A <sub>M</sub>    | Mute attenuation                              | -                                                                                 | 70       | 90                  |      | dB          |
| V <sub>OS</sub>   | Offset voltage                                | Mute and play                                                                     | -100     | -                   | 100  | mV          |
| $V_{AM}$          | Min. supply voltage threshold                 | -                                                                                 | 6.5      | 7                   | 7.5  | V           |
|                   | Slew rate                                     | -                                                                                 | 1.5      | -                   | -    | V/µs        |
| T <sub>ON</sub>   | Turn on delay                                 | D2/D1 (IB1) 0 to 1                                                                | -        | 10                  | 40   | ms          |
| T <sub>OFF</sub>  | Turn off delay                                | D2/D1 (IB1) 1 to 0                                                                | -        | 10                  | 40   | ms          |
| -                 | Thermal foldback junction temperature         | -                                                                                 | 155      | 170                 | 185  | °C          |
| CD                | Clip det thd. level                           | D0 (IB1) = 0                                                                      | 0        | 1                   | 2    | %           |
| CD <sub>THD</sub> | Olip det tild. level                          | D0 (IB1) = 1                                                                      | 5        | 10                  | 15   | %           |
| V <sub>O</sub>    | Offset detection                              | Power amplifier = play<br>AC Input = 0                                            | ±1.5     | ±2                  | ±2.5 | V           |
| T <sub>hw</sub>   | Thermal warning                               | -                                                                                 | -        | 165                 | -    | °C          |

Table 4. Electrical characteristics (continued)

| Symbol                                   | Parameter                                               | Test condition                                                                                                                                | Min.                    | Тур.                       | Max.                     | Unit |
|------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|--------------------------|------|
| I <sup>2</sup> C bus in                  | <sup>2</sup> C bus interface                            |                                                                                                                                               |                         |                            |                          |      |
| f <sub>SCL</sub>                         | Clock frequency                                         | -                                                                                                                                             | -                       | -                          | 400                      | KHz  |
| V <sub>IL</sub>                          | Input low voltage                                       | -                                                                                                                                             | -                       | -                          | 1.5                      | V    |
| V <sub>IH</sub>                          | Input high voltage                                      | -                                                                                                                                             | 2.3                     | -                          | -                        | V    |
| V <sub>Min(pin27)</sub>                  | Mute in threshold voltage                               | Amp. mute                                                                                                                                     | -                       | -                          | 1.5                      | V    |
| V <sub>Mout(pin27)</sub>                 | Mute out threshold voltage                              | -                                                                                                                                             | 3.5                     | -                          | -                        | V    |
| A <sub>M(pin 27)</sub>                   | Mute attenuation                                        | -                                                                                                                                             | 80                      | 90                         | -                        | -    |
| Voltage c                                | onverter                                                |                                                                                                                                               | •                       | •                          | •                        |      |
| V <sub>cc1</sub> ,<br>V <sub>cc2</sub>   | Converter output voltage (VC = ON)                      | V <sub>S</sub> = 14 V<br>D3 (IB2) = 0; D6 (IB2) = 0<br>D3 (IB2) = 1; D6 (IB2) = 0<br>D3 (IB2) = 0; D6 (IB2) = 1<br>D3 (IB2) = 1; D6 (IB2) = 1 | -                       | 15<br>16.5<br>17.5<br>18.5 | -                        | V    |
| F <sub>s</sub>                           | Voltage converter switching frequency                   | D6 (IB1) = 0; D7 (IB1) = 0<br>D6 (IB1) = 1; D7 (IB1) = 0<br>D6 (IB1) = 0; D7 (IB1) = 1<br>D6 (IB1) = 1; D7 (IB1) = 1                          | 90<br>135<br>230<br>360 | -                          | 120<br>175<br>300<br>470 | kHz  |
| V <sub>mgl</sub>                         | MOS gate output low voltage                             | I <sub>o</sub> = 200 mA                                                                                                                       | -                       | 1                          | 2                        | V    |
| V                                        | MOS gate output high voltage                            | I <sub>o</sub> = 20 mA                                                                                                                        | -                       | 11                         | -                        | V    |
| $V_{mgh}$                                |                                                         | I <sub>o</sub> = 200 mA                                                                                                                       | -                       | 9.5                        | -                        | ٧    |
| V <sub>mgclamp</sub>                     | MOS gate output clamp voltage                           | I <sub>o</sub> = 5 mA                                                                                                                         | -                       | 11.5                       | -                        | V    |
| t <sub>f</sub>                           | Fall time                                               | C <sub>o</sub> = 1 nF                                                                                                                         | -                       | 20                         | -                        | ns   |
| t <sub>r</sub>                           | Rise time                                               | C <sub>o</sub> = 1 nF                                                                                                                         | -                       | 50                         | -                        | ns   |
| V <sub>mgl</sub><br>(VC <sub>off</sub> ) | MOS gate output voltage with voltage converter disabled | I <sub>o</sub> = 5 mA                                                                                                                         |                         |                            | 0.5                      | V    |

<sup>1.</sup> Saturated square wave output.

C10 2.2nF R5 10 1W STPS30L40CT L1 100μH D1 C11 SDA 3300µF C12 100nF C8 220nF 10μF Q1 R3 10Ω OUT RF+ R4 3.3 1W STP60NE06 C1 220nF OUT RF-IN RF o-OUT RR+ 22 C2 220nF IN RR o-TDA7565 OUT RR-IN LF o-OUT LF-OUT LR+ IN LR o-OUT LR-MUTE o-D00AU1224B

Figure 3. Demoboard schematic

I<sup>2</sup>C bus interface TDA7565

## 3 I<sup>2</sup>C bus interface

Data transmission from microprocessor to the TDA7565 and vice versa takes place through the 2 wires I<sup>2</sup>C bus interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).

### 3.1 Data validity

As shown by *Figure 4*, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

### 3.2 Start and stop conditions

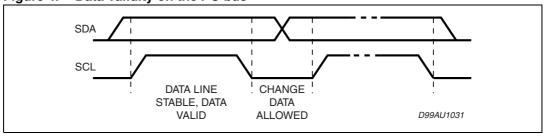
As shown by *Figure 5* a start condition is a high to low transition of the SDA line while SCL is HIGH. The stop condition is a low to high transition of the SDA line while SCL is high.

### 3.3 Byte format

Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

## 3.4 Acknowledge

The transmitter\* puts a resistive high level on the SDA line during the acknowledge clock pulse (see *Figure 6*). The receiver\*\* the acknowledges has to pull-down (low) the SDA line during the acknowledge clock pulse, so that the SDA line is stable low during this clock pulse.


#### \* Transmitter

- master (μP) when it writes an address to the TDA7565
- slave (TDA7565) when the μP reads a data byte from TDA7565

#### \*\* Receiver

- slave (TDA7565) when the  $\mu P$  writes an address to the TDA7565
- master (µP) when it reads a data byte from TDA7565

Figure 4. Data validity on the I<sup>2</sup>C bus



TDA7565 I<sup>2</sup>C bus interface

Figure 5. Timing diagram on the I<sup>2</sup>C bus

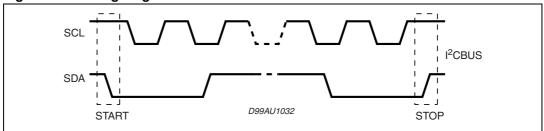
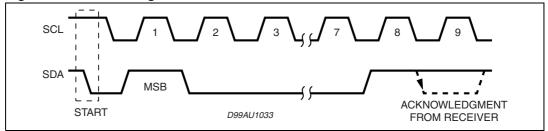




Figure 6. Acknowledge on the I<sup>2</sup>C bus



# 4 Software specifications

All the functions of the TDA7565 are activated by  $\ensuremath{\text{I}}^2\text{C}$  interface.

The bit 0 of the "ADDRESS BYTE" defines if the next bytes are write instruction (from  $\mu P$  to TDA7565) or read instruction (from TDA7565 to  $\mu P$ ).

Table 5. Chip address

| Bit     | Instruction                                               |
|---------|-----------------------------------------------------------|
| D7      | Address bit                                               |
| D6      | Address bit                                               |
| D5      | Address bit                                               |
| D4      | Address bit                                               |
| D3      | Address bit                                               |
| D2      | Address bit                                               |
| D1      | Address bit                                               |
| D0(R/W) | Read/Write bit 0 = Write instruction 1 = read instruction |

If R/W = 0, the  $\mu$ P sends 2 "Instruction Bytes": IB1 and IB2.

Table 6. IB1

| Bit | Instruction                                                          |
|-----|----------------------------------------------------------------------|
| D7  | Sel. freq. switch 1                                                  |
| D6  | Sel. freq. switch 2                                                  |
| D5  | Offset detection start (D5 = 1) Offset detection stop (D5 = 0) (off) |
| D4  | Front channel Gain = 26dB (D4 = 0) Gain = 12dB (D4 = 1)              |
| D3  | Rear channel Gain = 26dB (D3 = 0) Gain = 12dB (D3 = 1)               |
| D2  | Mute front channels (D2 = 0) Unmute front channels (D2 = 1)          |
| D1  | Mute rear channels (D1 = 0) Unmute rear channels (D1 = 1)            |
| D0  | CD 1% (D0 = 0)<br>CD 10% (D0 = 1)                                    |

Table 7. IB2

| Bit | Instruction                                                                                                     |
|-----|-----------------------------------------------------------------------------------------------------------------|
| D7  | Voltage converter enabled (D7 = 1)<br>Voltage converter disabled (D7 = 0)                                       |
| D6  | Regulated voltage selection 1                                                                                   |
| D5  | Test speed                                                                                                      |
| D4  | Stand-by on - amplifier not working - $(D4 = 0)$<br>Stand-by off - amplifier working - $(D4 = 1)$               |
| D3  | Regulated voltage selection 0)                                                                                  |
| D2  | To be forced to "Level 1"                                                                                       |
| D1  | Right channel Power amplifier working in standard mode (D1 = 0) Power amplifier working in Hi Eff. mode(D1 = 1) |
| D0  | Left channel Power amplifier working in standard mode (D0 = 0) Power amplifier working in Hi Eff. mode(D0 = 1)  |

### Table 8. DB1

| Bit | Instruction                    |
|-----|--------------------------------|
| D7  | Thermal warning                |
| D6  | Х                              |
| D5  | Х                              |
| D4  | Х                              |
| D3  | Х                              |
| D2  | Offset (LF)                    |
| D1  | Short circuit protection (CH1) |
| D0  | X                              |

### Table 9. DB2

| Bit | Instruction                    |
|-----|--------------------------------|
| D7  | Off status                     |
| D6  | X                              |
| D5  | Clip detector output           |
| D4  | X                              |
| D3  | X                              |
| D2  | Offset (LR)                    |
| D1  | Short circuit protection (CH2) |
| D0  | X                              |

Table 10. DB3

| Bit | Instruction                    |
|-----|--------------------------------|
| D7  | Standby status                 |
| D6  | X                              |
| D5  | X                              |
| D4  | X                              |
| D3  | X                              |
| D2  | Offset (RF)                    |
| D1  | Short circuit protection (CH3) |
| D0  | X                              |

Table 11. DB4

| Bit | Instruction                    |
|-----|--------------------------------|
| D7  | x                              |
| D6  | X                              |
| D5  | X                              |
| D4  | x                              |
| D3  | X                              |
| D2  | Offset (RR)                    |
| D1  | Short circuit protection (CH4) |
| D0  | X                              |

# 5 Examples of bytes sequence

**1** - Turn-on of the power amplifier with 26 dB gain, mute on, diagnostic defeat, high eff. mode, voltage converter disabled.

| Start | Address byte with D0 = 0 | ACK | IB1      | ACK | IB2      | ACK | STOP |
|-------|--------------------------|-----|----------|-----|----------|-----|------|
|       |                          |     | XX00X000 |     | 0XX1XX10 |     |      |

#### 2 - Turn-off of the power amplifier

| Start | Address byte with D0 = 0 | ACK | IB1     | ACK | IB2      | ACK | STOP |
|-------|--------------------------|-----|---------|-----|----------|-----|------|
|       |                          |     | XXXXXXX |     | XXX0XXX0 |     |      |

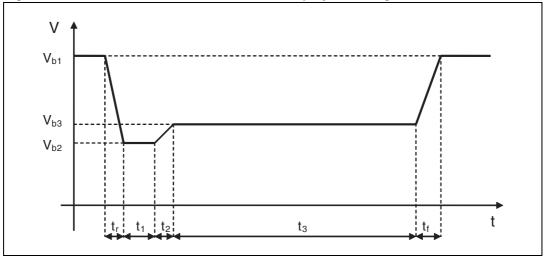
#### 4 - Offset detection procedure start

| Start | Address byte with D0 = 0 | ACK | IB1      | ACK | IB2      | ACK | STOP |
|-------|--------------------------|-----|----------|-----|----------|-----|------|
|       |                          |     | XX1XX11X |     | XXX1XXX0 |     |      |

**5** - Offset detection procedure stop and reading operation.

| Start | Address byte with D0 = 1 | ACK | DB1 | STOP |
|-------|--------------------------|-----|-----|------|
|-------|--------------------------|-----|-----|------|

- The purpose of this test is to check if a D.C. offset (2V typ.) is present on the outputs, produced by input capacitor with anomalous leakage current or humidity between pins.
- The delay from 3 to 4 can be selected by software, starting from 1 ms


## 6 Low voltage "start-stop" operation

The most recent OEM specification are requiring automatic stop of car engine at traffic lights in order to reduce emissions of polluting substances. The TDA7565, thanks to its integrated switching voltage converter, allows a continuous operation when battery falls down to 6/7 V during such conditions, without producing pop noise. The maximum system power will be reduced accordingly.

The internal converter must be enabled and programmed in order to supply 15 V (D3 (IB2) = 0; D6 (IB2) = 0). The suggested voltage frequency switching is 150 kHz (D6 (IB1) = 1; D7 (IB1) = 0).

The following curve is a worst case condition for a start-stop system. The TDA7565, with the switching converter powered on, can sustain this cranking curve without any audio signal interruption.





$$V_{b1} = 12 \text{ V}, V_{b2} = 6 \text{ V}, V_{b3} = 7 \text{ V}$$

 $R_i \le 0.01 \Omega$  (internal resistor of power supply)

Recovery time from test start to tr is 1 s

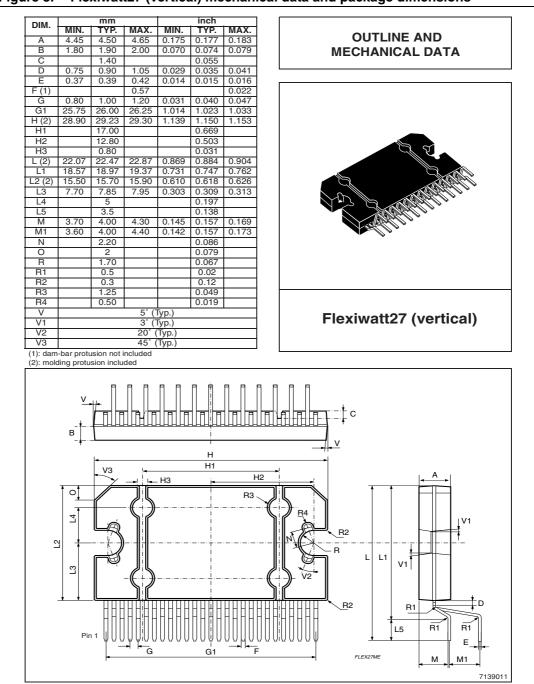
$$t_r = 2 \text{ ms}$$

 $t_1 = 1$  ms (the shortest time, at cranking simulation power supply, is 5 ms)

$$t_2 = 15 \text{ ms}$$

$$t_3 = 1 s$$

$$t_f = 0.5 s$$


TDA7565 Package information

## 7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: <a href="www.st.com">www.st.com</a>.

 $\mathsf{ECOPACK}^{(\! R \!)}$  is an ST trademark.

Figure 8. Flexiwatt27 (vertical) mechanical data and package dimensions



Revision history TDA7565

# 8 Revision history

Table 12. Document revision history

| Date        | Revision | Changes                                                                                                                                       |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 20-Sep-2003 | 1        | Initial release.                                                                                                                              |
| 1-Jul-2008  | 2        | Document reformatted. Document status promoted from product preview to datasheet.                                                             |
| 25-Jan-2010 | 3        | Updated Features and Description on page 1. Updated Table 4: Electrical characteristics. Added Section 6: Low voltage "start-stop" operation. |
| 03-Feb-2010 | 4        | Minor text changes.                                                                                                                           |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com



Doc ID 9800 Rev 4