

LCDP1521S

Dual line programmable transient voltage suppressor for SLIC protection

Features

- Dual line programmable transient voltage suppressor with separated gates
- Wide negative firing voltage range: V_{Gn} = -175 V max.
- Low dynamic switching voltages: V_{FP} and V_{DGI}
- Low gate triggering current: I_{GT} = 5 mA max
- Peak pulse current: $I_{PP} = 40 \text{ A } (5/310 \text{ µs})$
- Holding current: I_H = 150 mA min.

Benefits

- A TrisilTM is not subject to ageing and provides a fail safe mode in short circuit for a better protection.
- Trisils are used to help equipment to meet various standards such as UL1950, IEC 60950 / CSA C22.2, UL1459 and TIA-968-A (formerly FCC part 68).
- Trisils have UL94 V0 resin approved (Trisils are UL497B approved file: E136224).

Description

This device has been especially designed to protect 2 new high voltage, as well as classical SLICs, against transient overvoltages.

Positive overvoltages are clamped by 2 diodes. Negative surges are suppressed by 2 thyristors, their breakdown voltage being referenced to -V_{BAT} through the gate. Separated gates allow the SLICs to be supplied by two different voltages.

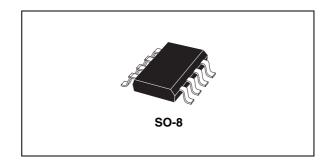
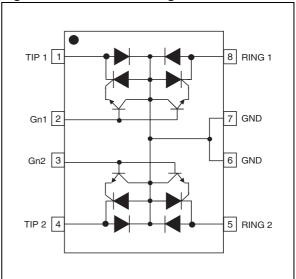



Figure 1. Functional diagram

TM: Trisil ,is a trademark of STMicroelectronics

Characteristics LCDP1521S

1 Characteristics

Table 1. Compliant with the following standards

STANDARD	Peak Surge Voltage (V)	Voltage Waveform	Required peak current (A)	Current Waveform	Minimum serial resistor to meet standard (Ω)	
GR-1089 Core	2500	2/10 μs	500	2/10 μs	23	
First level	1000	10/1000 μs	100	10/1000 μs	30	
GR-1089 Core Second level	5000	2/10 µs	500	2/10 µs	46	
GR-1089 Core Intra-building	1500	2/10 µs	100	2/10 µs	2	
ITU-T-K20/K21	6000 1500	10/700 μs	150 37.5	5/310 µs	110 0	
ITU-T-K20	8000	1/60 ns	ESD contact discharge		0	
(IEC61000-4-2)	15000	1/00 115	ESD air o	discharge	0	
IEC61000-4-5	4000	10/700 μs	100	5/310 μs	60	
12001000-4-5	4000	1.2/50 µs	100	8/20 μs	27	
TIA-968-A, lightning	1500	10/160 μs	200	10/160 µs	36	
surge type A	800	10/560 μs	100	10/560 μs	24	
TIA-968-A, lightning surge type B	1000	9/720 µs	25	5/320 µs	0	

Table 2. Thermal resistance

Symbol	Parameter	Value	Unit	
R _{th(j-a)}	Junction to ambient	170	°C/W	

LCDP1521S Characteristics

Table 3. Absolute ratings (0 $^{\circ}$ C < T_j < 70 $^{\circ}$ C, unless otherwise specified)

Symbol	Parameter	Value	Unit		
		10/1000 μs	25		
ļ		8/20 μs			
		10/560 μs	25		
I _{PP}	Peak pulse current	5/310 µs	40	Α	
		10/160 μs	35		
		1/20 µs	60		
		2/10 µs	90		
		t = 0.2 s	5		
1 -	Non repetitive surge peak on-state	t = 1 s	3.5	Α	
I _{TSM}	current (50 Hz sinusoidal)	t = 2 s	3	^	
		t = 15 mn	1.3		
V _{Gn1} , V _{Gn2}	Negative battery voltage range -40 °C < T _{amb} < +85 °C		-175	V	
T _{stg}	Storage temperature range	- 55 to + 150	°C		
T _j	Operating junction temperature range	- 55 to + 150	°C		
T _L	Maximum lead temperature for solder	260	°C		

Figure 2. Electrical characteristics - definitions ($T_{amb} = 25$ °C)

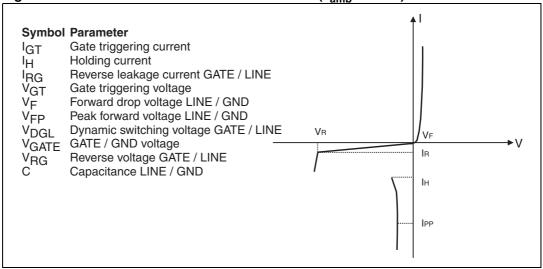
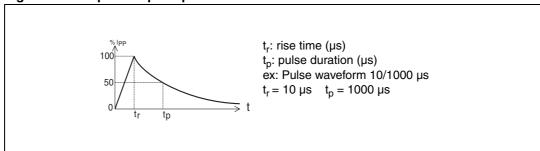



Figure 3. Repetitive peak pulse current

Characteristics LCDP1521S

Table 4. Parameters $(T_j = 25^{\circ}C \text{ unless otherwise specified})$

Symbol	Test conditions				Min.	Тур.	Max.	Unit
I _{GT}	V _{LINE} = -48 V				0.05		5	mA
I _H	V _{Gn} = -48 V				150			mA
V _{GT}	at I _{GT}						2.5	V
I _{RG}	V _{RG} = -175 V V _{RG} = -175 V			$T_j = 25 ^{\circ}\text{C}$ $T_j = 85 ^{\circ}\text{C}$			5 50	μΑ
V _{DGL}	V _{Gn} = -48 V 10/700 μs	1.5 kV	$R_S = 0 \Omega$	I _{PP} = 37.5 A			5	V
V _F	I _F = 1 A		00 μs			2	V	
V _{FP}	10/700 μs	1.5 kV	$R_S = 0 \Omega$	I _{PP} = 37.5 A			8	V
I _R	V _{Gn / LINE} = -1V, V _{LINE} = -175 V V _{Gn / LINE} = -1V, V _{LINE} = -175 V		$T_j = 25 ^{\circ}\text{C}$ $T_j = 85 ^{\circ}\text{C}$			5 50	μА	
С	V _{LINE} = -50 V, V _{RMS} = 1 V, F = 1 MHz V _{LINE} = -2 V, V _{RMS} = 1 V, F = 1 MHz					18 35		pF

Table 5. Recommended gate capacitance

4/10

Symbol	Component	Min.	Тур.	Max.	Unit
C _G	Gate decoupling capacitance		220		nF

LCDP1521S **Technical information**

Technical information 2

The LCDP1521S is particularly optimized for the new telecom applications such as the fiber in the loop, the WLL, the remote central office. In this case, the operating voltages are smaller than in the classical system. This makes the high voltage SLICs particularly suitable. The schematics of Figure 4 shows the topologies most frequently used for these applications.

-Vbat1 **Fuse or PTC** TIP SLIC1 RING RING1 Fuse or PTC TIP2 Gn2 SLIC₂ RING2 RING2 -Vbat2

Figure 4. Protection of high voltage SLICs

 $I_{TSM}(A)$ 15 10 t(s) 1.E-01 1.E-02 1.E+00 1.E+01 1.E+02 1.E+03

Figure 5. Non repetitive surge peak on-state current versus pulse duration

Technical information LCDP1521S

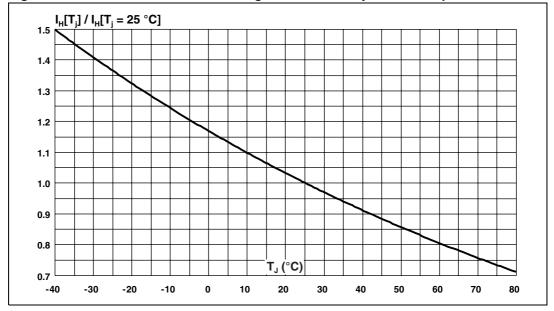
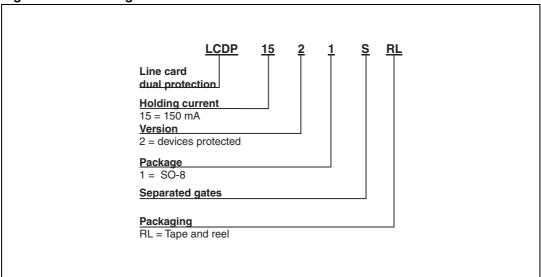



Figure 6. Relative variation of holding current versus junction temperature

6/10

3 Ordering information scheme

Figure 7. Ordering information scheme

Package information LCDP1521S

4 Package information

- Epoxy meets UL94, V0
- Lead-free package

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 6. SO-8 dimensions

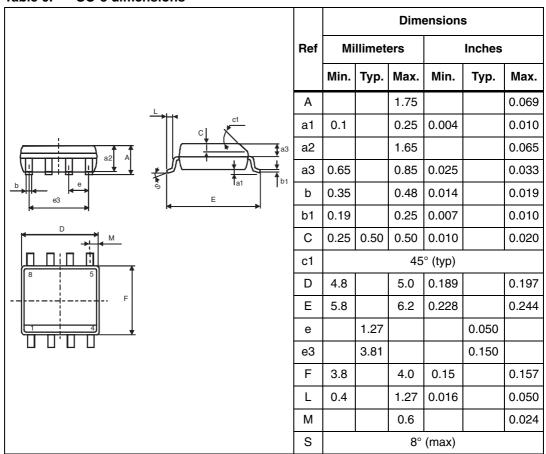
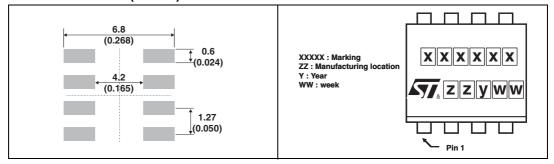



Figure 8. Footprint dimensions in mm (inches)

Figure 9. Marking

5 Ordering information

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
LCDP1521SRL	DP152S	SO-8	0.08 g	2500	Tape and reel

6 Revision history

Table 8. Document revision history

Date	Revision	Changes
24-Sep-2009	1	First issue.
23-Feb-2012	2	Standardized nomenclature for Gn and Gp.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

10/10 Doc ID 16268 Rev 2