

STD2NC45-1

N-channel 450 V, 4.1 Ω, 1.5 A, IPAK SuperMESH™ Power MOSFET

Features

- Extremely high dv/dt capability
- 100% avalanche tested
- Gate charge minimized
- New high voltage benchmark

Application

Switching applications

Description

The SuperMESH™ series is obtained through an extreme optimization of ST's well established strip-based PowerMESH™ layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good dv/dt capability for the most demanding applications. Such series complements ST full range of high voltage Power MOSFETs including revolutionary MDmesh™ products.

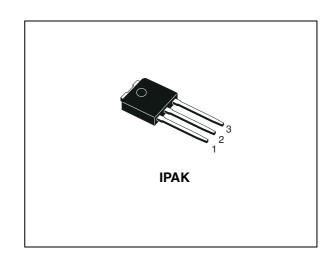


Figure 1. Internal schematic diagram

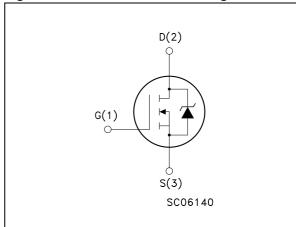


Table 1. Device summary

Order code	Marking	Package	Packaging	
STD2NC45-1	D2NC45	IPAK	Tube	

Contents STD2NC45-1

Contents

1	Electrical ratings 3
2	Electrical characteristics 4
	2.1 Electrical characteristics (curves)
3	Test circuits9
4	Package mechanical data10
5	Revision history12

STD2NC45-1 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	450	V
V _{GS}	Gate- source voltage	±30	V
I _D	Drain current (continuous) at T _C = 25°C	1.5	Α
I _D	Drain current (continuous) at T _C = 100°C	0.95	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	6	Α
P _{TOT}	Total dissipation at T _C = 25°C	30	
	Derating factor	0.24	W/°C
dv/dt (2)	Peak diode recovery voltage slope	3	V/ns
T _{stg}	Storage temperature	-65 to 150	°C
Tj	Max. operating junction temperature	-05 (0 150	°C

^{1.} Pulse width limited by safe operating area

Table 3. Thermal data

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case max	4.1	°C/W
Rthj-amb	Thermal resistance junction-ambient max	100	°C/W
T _I	Maximum lead temperature for soldering purpose 27		°C

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AS}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj Max)	1.5	Α
E _{AS}	Single pulse avalanche energy (starting Tj=25°C, I _D =I _{AS} , V _{DD} =50V)	25	mJ

^{2.} $I_{SD} \le 0.5 A$, di/dt $\le 100 A/\mu s$, $V_{DD} = 80\% V_{(BR)DSS}$

Electrical characteristics STD2NC45-1

2 Electrical characteristics

(T_{CASE} = 25°C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \mu A, V_{GS} = 0$	450			V
I _{DSS}	Zero gate voltage Drain current (V _{GS} = 0)	V_{DS} = Max rating V_{DS} = Max rating, T_{C} = 125°C			1 50	μA μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 30V$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.3	3	3.7	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10V, I_D = 0.5A$		4.1	4.5	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_D = 0.5A$	-	1.1		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25V$, f = 1 MHz, $V_{GS} = 0$	-	160 27.5 4.7		pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 360V, I_{D} = 1.5A, V_{GS} = 10V, R_{G} = 4.7 Ω (see Figure 17)	-	7 1.3 3.2	10	nC nC nC

^{1.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5 %

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time Rise time	$V_{DD} = 225V$, $I_D = 0.5A$ $R_G = 4.7\Omega V_{GS} = 10V$ (see Figure 16)	-	6.7 4	-	ns ns
t _{r(Voff)} t _f t _C	Off-voltage rise time Fall time Cross-over time	$V_{DD} = 360V, I_{D} = 1.5A,$ $R_{G} = 4.7Q, V_{GS} = 10V$ (see Figure 16)	-	8.5 12 18	-	ns ns ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		_		1.5	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				6.0	Α
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 1.5A, V_{GS} = 0$	-		1.6	٧
t _{rr}	Reverse recovery time	$I_{SD} = 1.5A$, di/dt = 100A/ μ s		225		ns
Q_{rr}	Reverse recovery charge	$V_{DD} = 100V, T_j = 150^{\circ}C$	-	530		μC
I _{RRM}	Reverse recovery current	(see Figure 21)		4.7		Α

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5 %

Electrical characteristics STD2NC45-1

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for IPAK

Figure 3. Thermal impedance for IPAK

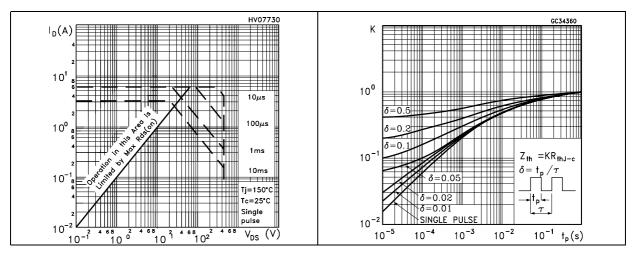


Figure 4. Output characteristics

Figure 5. Transfer characteristics

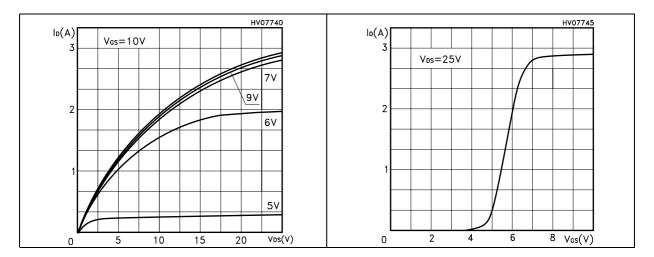
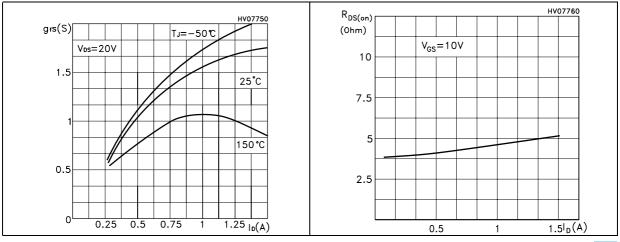



Figure 6. Transconductance

Figure 7. Static drain-source on resistance

6/13 Doc ID 9103 Rev 4

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

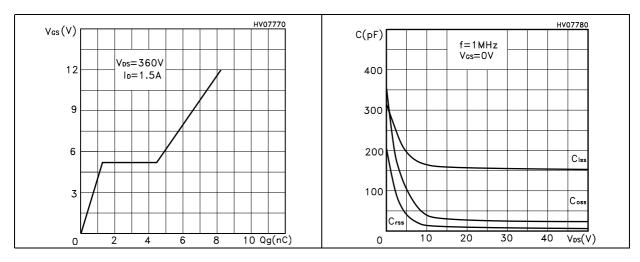


Figure 10. Normalized gate threshold voltage Figure 11. Normalized on resistance vs vs temperature temperature

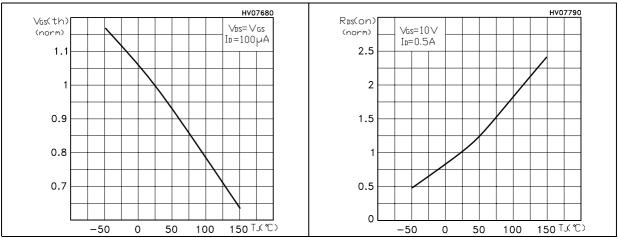
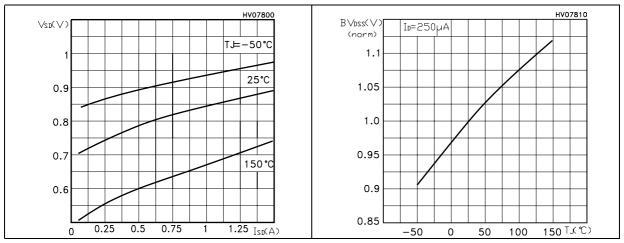
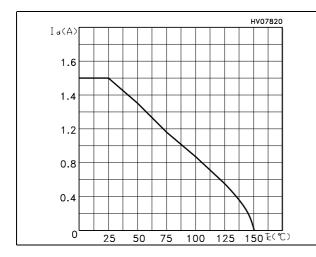
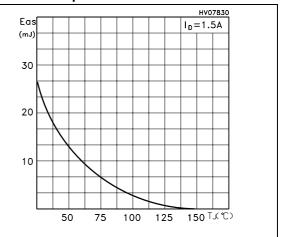



Figure 12. Source-drain diode forward characteristics


Figure 13. Normalized \mathbf{B}_{VDSS} vs temperature



Electrical characteristics STD2NC45-1

Figure 14. Max Id current vs Temperature

Figure 15. Maximum avalanche energy vs temperature

STD2NC45-1 Test circuits

3 Test circuits

Figure 16. Switching times test circuit for resistive load

Figure 17. Gate charge test circuit

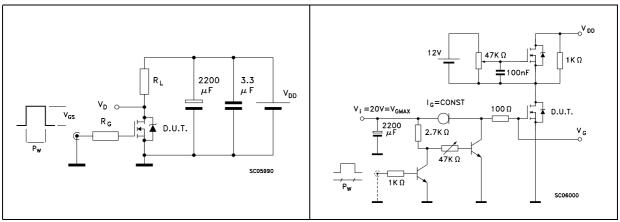


Figure 18. Test circuit for inductive load switching and diode recovery times

Figure 19. Unclamped inductive load test circuit

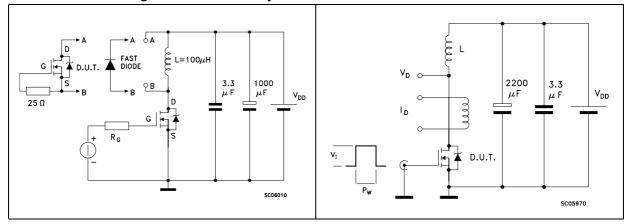
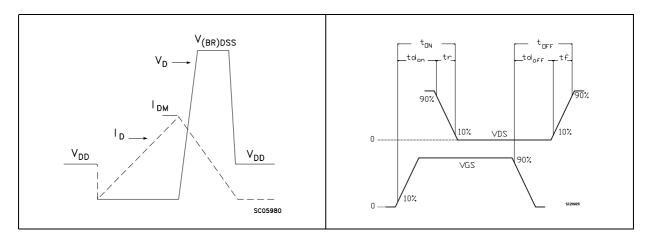
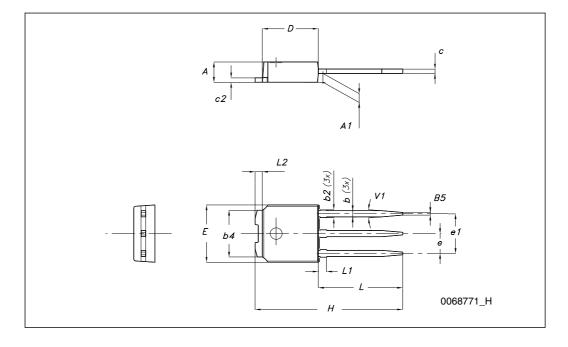



Figure 20. Unclamped inductive waveform

Figure 21. Switching time waveform


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

10/13 Doc ID 9103 Rev 4

TO-251 (IPAK)) mechanical	data
---------------	--------------	------

DIM.		mm.	
DIWI.	min.	typ	max.
A	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
E	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
(L1)	0.80		1.20
L2		0.80	
V1		10 °	

Revision history STD2NC45-1

5 Revision history

Table 9. Revision history

Date	Revision	Changes
21-Jun-2004	2	Complete version
12-Jul-2006	3	New template
17-Apr-2009	4	Updated mechanical data New ECOPACK® statement in Section 4: Package mechanical data

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 9103 Rev 4