STK5F1U3C3D-E

Inverter Power IPM for 3-phase Motor Drive

Overview

This "Inverter Power IPM" is highly integrated device containing all High Voltage (HV) control from HV-DC to 3-phase outputs in a single DIP module (Dual-In line Package). Output stage uses IGBT/FRD technology and implements Under Voltage Protection (UVP) and Over Current Protection (OCP) with a Fault Detection output flag. Internal Boost diodes are provided for high side gate boost drive.

Function

- Single control power supply due to Internal bootstrap circuit for high side pre-driver circuit
- All control input and status output are at low voltage levels directly compatible with microcontrollers
- Built-in cross conduction prevention
- Externally accessible embedded thermistor for substrate temperature measurement
- The level of the over-current protection current is adjustable with the external resistor, "RSD"
- Low switching noise by optimized the gate resistor

Certification

• UL1557 (File Number: E339285)

Specifications

Absolute Maximum Ratings at Tc = 25°C

Parameter	Symbol	Remarks	Ratings	Unit	
Supply voltage	VCC	P to N, surge < 500V *1	450	V	
Collector-emitter voltage	VCE	P to U,V,W or U,V,W to N	600	V	
Output ourroat		P, N, U, V, W terminal current	±30	А	
Output current	lo	P, N, U, V, W terminal current, Tc=100°C	±15	A	
Output peak current	lop	P, N, U, V, W terminal current, PW=1ms	±49	А	
Pre-driver supply voltage	Pre-driver supply voltage VD1,2,3,4 VB1 to VS1,VB2 to VS2,VB3 to VS3,VDD to VSS *2		20	V	
Input signal voltage VIN HIN1, 2, 3, LIN1, 2, 3		HIN1, 2, 3, LIN1, 2, 3	-0.3 to V _{DD}	V	
FAULT terminal voltage	al voltage VFAULT FAULT terminal		–0.3 to V _{DD}	V	
Maximum loss	Pd	IGBT per channel	56.8	W	
Junction temperature	Tj	IGBT,FRD	150	°C	
Storage temperature	Tstg		-40 to +125	°C	
Operating temperature	Тс	HIC case	-20 to +100	°C	
Tightening torque	MT	A screw part at use M4 type screw *3	1.17	Nm	
Withstand voltage	Vis	50Hz sine wave AC 1 minute *4	2000	VRMS	

Reference voltage is N terminal = V_{SS} terminal voltage unless otherwise specified.

*1: Surge voltage developed by the switching operation due to the wiring inductance between the P and N terminals.

*2: Terminal voltage: VD1=VB1-VS1, VD2=VB2-VS2, VD3=VB3-VS3, VD4=V_{DD}-V_{SS}.

- *3: Flatness of the heat-sink should be 0.25mm and below.
- *4: Test conditions: AC 2500V, 1 second.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ORDERING INFORMATION

See detailed ordering and shipping information on page 16 of this data sheet.

STK5F1U3C3D-E

Electrical Characteristics at Tc = 25°C, VD1, VD2, VD3, VD4=15V

Parameter	Symbol	Cond	itions	Test		Ratings	i	Unit
i didineter	Symbol Conditions		circuit	Min.	Тур.	Max.	Offic	
Power output section	1	-					-	1
Collector to emitter cut-off current	ICE	V _{CE} =600V		Fig.1	-	-	100	μA
Bootstrap diode reverse current	IR(BD)	VR(BD)=600V		r ig. i	-	-	100	μA
		Ic=30A	Upper side		-	1.7	2.5	
Collector to emitter saturation)/ (a at)	10-30A	Lower side	Fig.2	-	2.2	3.1	V
voltage	V _{CE} (sat)	lc=15A,	Upper side		-	1.4	-	V
		Tj=100°C	Lower side		-	1.7	-	
			Upper side		-	1.8	2.7	
		IF=30A	Lower side		-	2.3	3.1	
Diode forward voltage	VF IF=15A,	IF=15A	Upper side	Fig.3	_	1.45	_	V
		Tj=100°C	Lower side	_	_	1.7	-	
	θj-c(T)	IGBT		-	_	1.8	-	°C/W
Junction to case thermal resistance	hction to case thermal resistance θj-c(D) FWD		_	-	2.3	-	°C/W	
Control (Pre-driver) section	0j-0(D)			_		2.0	_	0/11
. ,		VD1, 2, 3=15V			_	0.05	0.4	1
Pre-drive power supply consumption current	ID	VD1, 2, 3-15V VD4=15V		Fig.4	-	1.0	4.0	mA
High level input voltage	Vin H		10	_	- 2.5	1.0	4.0	V
Low level input voltage	Vin H	HIN1, HIN2, HIN3,				-	- 0.8	V
Logic 1 input leakage current	IIN+	LIN1, LIN2, LIN3 to V _{SS}		-	-			-
Logic 0 input leakage current	IN+	VIN=+3.3V		-	-	100	195 1	μΑ
Bootstrap limiting resistor	RBoot	VIN=0V		-	-	- 39	-	μA Ω
	Rb					30	-	Ω
Gate resistor	Rg			_		47		Ω
Protection section								I
Over-current protection current	ISD	PW=100µs,RSD	=0Ω	Fig.5	37	-	49	А
Over-current protection noise filter time constant	ISDNF			-	-	2.0	-	us
V_{dd} and V_{Bx} supply undervoltage positive going input threshold	V _{ddUV+} V _{BxUV+}			-	10.6	11.1	11.6	V
V_{dd} and V_{Bx} supply undervoltage negative going input threshold	V _{ddUV-} V _{BxUV-}			-	10.4	10.9	11.4	V
V_{dd} and V_{Bx} supply undervoltage	V _{ddUVH}							
I _{lockout} hysteresis	V _{BxUVH}			-	-	0.2	-	V
FAULT terminal sink current	IOSD	VFAULT=0.1V		-	1	1.5	-	mA
FAULT clearance delay time	FLTCLR	From time fault of	condition clear	-	1.3	1.65	2.5	ms
Switching character	1	i		1				1
Switching time	tON	lo=30A, Inductiv	e load		-	0.8	1.5	μs
	tOFF			_	-	1.0	2.0	μs
Turn-on switching loss	Eon	lo=30A, V _{CC} =30	00V,		-	1070 890	-	μJ
Turn-off switching loss	Eoff	VD=15V, L=690	Н	Fig.6	-	1960	-	μJ
Total switching loss	Etot Eon				-	590	-	μJ
Turn-on switching loss Turn-off switching loss	Eoff	lo=15A, V _{CC} =30 VD=15V, L=690			-	590	-	μJ
Total switching loss	Etot	Tc=100°C	ar 1,		-	1180	-	μJ μJ
Diode reverse recovery energy	Erec	lo=15A, V _{CC} =30	00V,		-	95	-	μJ
Diode reverse recovery time	Trr	VD=15V, L=690 Tc=100°C		-	-	145	-	ns
Reverse bias safe operating area	RBSOA	Io = 49A, V _{CE} =4	150V	-		Full square		
Short circuit safe operating area	SCSOA	V _{CE} =400V, Tc=7	100°C	-	4	-	-	μs
Electric current output signal level	ISO	lo=30A		-	0.384	0.405	0.427	V

Reference voltage is $\ensuremath{V_{SS}}$ terminal voltage unless otherwise specified.

*1: The lower side's $V_{CE}(sat)$ and VF include a loss by the shunt resistance.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Notes

1. When the internal protection circuit operates, a Fault signal is turned ON (When the Fault terminal is low level, Fault signal is ON state : output form is open DRAIN) but the Fault signal does not latch. After protection operation ends, it returns automatically within about 18ms to 80ms and resumes operation beginning condition. So, after Fault signal detection, set all input signals to OFF (Low) at once. However, the operation of pre-drive power supply low voltage protection (UVLO: with hysteresis about 0.2V) is as follows.

Upper side:

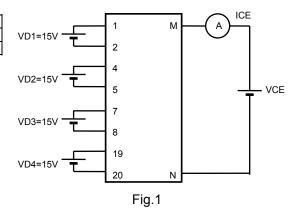
The gate is turned off and will return to regular operation when recovering to the normal voltage, but the latch will continue till the input signal will turn 'low'.

Lower side:

The gate is turned off and will automatically reset when recovering to normal voltage. It does not depend on input signal voltage.

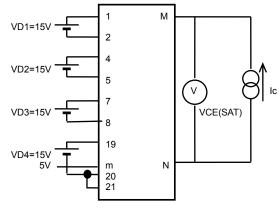
- 2. When assembling the IPM on the heat sink with M4 type screw, tightening torque range is 0.79 Nm to 1.17 Nm.
- 3. The pre-drive low voltage protection is the feature to protect devices when the pre-driver supply voltage falls due to an operating malfunction.

Pin Assignment


Pin No.	Name	Description	Pin No.	Name	Description
1	VB1	High side floating supply voltage 1	44	Р	Positive bus input voltage
2	VS1	High side floating supply offset voltage	43	Р	Positive bus input voltage
3	-	Without pin	42	Р	Positive bus input voltage
4	VB2	High side floating supply voltage 2	41	-	Without pin
5	VS2	High side floating supply offset voltage	40	Ν	Negative bus input voltage
6	-	Without pin	39	Ν	Negative bus input voltage
7	VB3	High side floating supply voltage 3	38	Ν	Negative bus input voltage
8	VS3	High side floating supply offset voltage	37	-	Without pin
9	-	Without pin	36	U	U-phase output
10	HIN1	Logic input high side driver-Phase1	35	U	U-phase output
11	HIN2	Logic input high side driver-Phase2	34	U	U-phase output
12	HIN3	Logic input high side driver-Phase3	33	-	Without pin
13	LIN1	Logic input low side driver-Phase1	32	V	V-phase output
14	LIN2	Logic input low side driver-Phase2	31	V	V-phase output
15	LIN3	Logic input low side driver-Phase3	30	V	V-phase output
16	FAULT	Fault out (open drain)	29	-	Without pin
17	ISO	Current monitor pin	28	W	W-phase output
18	TH	Thermistor out	27	W	W-phase output
19	VDD	+15V main supply	26	W	W-phase output
20	VSS	Negative main supply	25	-	Without pin
21	ISD	Over-current protection level setting pin	24	NC	-
22	NC	-	23	NC	-

Test Circuit

(The tested phase: U+ shows the upper side of the U phase and U- shows the lower side of the U phase.)


ICE / IR(BD)

	U+	V+	W+	U-	V-	W-
М	42	42	42	34	30	26
Ν	34	30	26	38	38	38
	U(BD)	V(BD)	W(BD)			
М	1	4	7	1		
Ν	20	20	20			
				-		

■ VCE(SAT) (Test by pulse)

	U+	V+	W+	U-	V-	W-
М	42	42	42	34	30	26
Ν	34	30	26	17	19	21
m	10	11	12	13	14	15

■ VF (Test by pulse)

	U+	V+	W+	U-	V-	W-
Μ	42	42	42	34	30	26
Ν	34	30	26	38	38	38

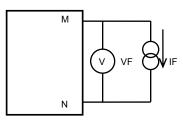


Fig.3

■ ID

	VD1	VD2	VD3	VD4
М	1	4	7	19
Ν	2	5	8	20

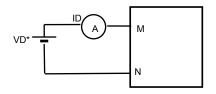
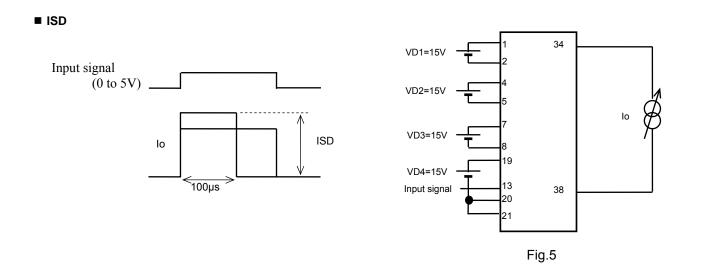



Fig.4

Switching time (The circuit is a representative example of the lower side U phase.)

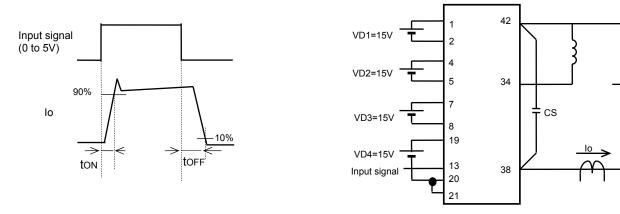
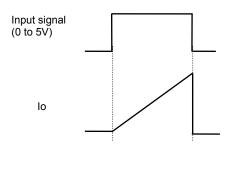
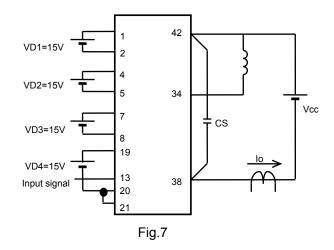
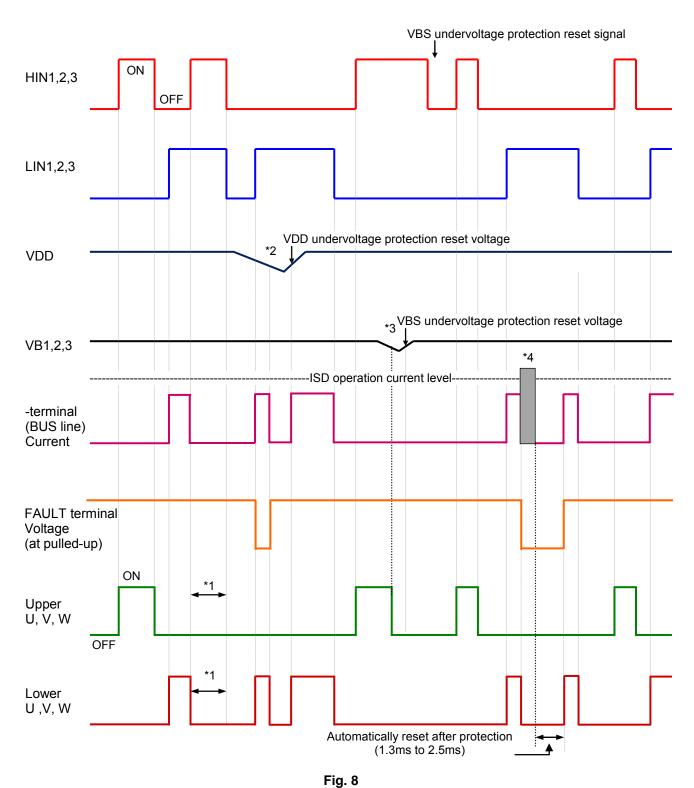




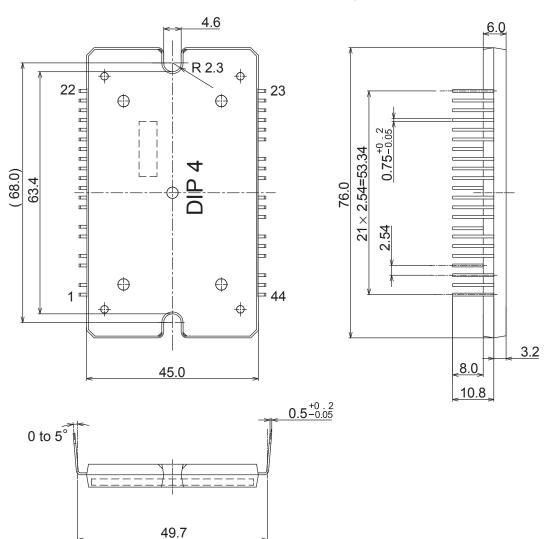
Fig.6


Vcc

■ RB-SOA (The circuit is a representative example of the lower side U phase.)

Logic Timing Chart

Notes


- *1: Diagram shows the prevention of shoot-through via control logic. More dead time to account for switching delay needs to be added externally.
- *2 : When V_{DD} decreases all gate output signals will go low and cut off all of 6 IGBT outputs. part. When V_{DD} rises the operation will resume immediately.
- *3: When the upper side gate voltage at VB1, VB2 and VB3 drops only, the corresponding upper side output is turned off. The outputs return to normal operation immediately after the upper side gat voltage rises.
- *4 : In case of over current detection, all IGBT's are turned off and the FAULT output is asserted. Normal operation resumes in 1.3 to 2.5ms after the over current condition is removed.

Package Dimensions

unit : mm

HYBRID INTEGRATED MODULE CASE MODAW

ISSUE O

Missing Pin : 3, 6, 9, 29, 33, 37, 41

ORDERING INFORMATION

Device	Device Package	
STK5F1U3C3D-E	MODAW, 610AC-DIP4-UL (Pb-Free)	6 / Tube

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright la