# International Rectifier # AUIRLR2908 HEXFET® Power MOSFET ### **Features** - Advanced Planar Technology - Logic-Level Gate Drive - Low On-Resistance - 175°C Operating Temperature - Fast Switching - Fully Avalanche Rated - Repetitive Avalanche Allowed up to Tjmax - Lead-Free, RoHS Compliant - Automotive Qualified\* | $V_{(BR)DSS}$ | 80V | |----------------------------------|------------------| | R <sub>DS(on)</sub> typ. | <b>22.5m</b> $Ω$ | | max | <b>28m</b> $Ω$ | | D (Silicon Limited) | <b>39A</b> ⑨ | | I <sub>D (Package Limited)</sub> | 30A | ### **Description** Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications. | G | D | S | |------|-------|--------| | Gate | Drain | Source | ### **Absolute Maximum Ratings** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T<sub>A</sub>) is 25°C, unless otherwise specified. | | Parameter | Max. | Units | |-----------------------------------------|-------------------------------------------------------------------|---------------------------|-------| | I <sub>D</sub> @ T <sub>C</sub> = 25°C | Continuous Drain Current, V <sub>GS</sub> @ 10V (Silicon Limited) | 39® | | | I <sub>D</sub> @ T <sub>C</sub> = 100°C | Continuous Drain Current, VGS @ 10V (Silicon Limited) | 28 | Α | | I <sub>D</sub> @ T <sub>C</sub> = 25°C | Continuous Drain Current, V <sub>GS</sub> @ 10V (Package Limited) | 30 | | | I <sub>DM</sub> | Pulsed Drain Current ① | 150 | | | P <sub>D</sub> @T <sub>C</sub> = 25°C | Power Dissipation | 120 | W | | | Linear Derating Factor | 0.77 | W/°C | | $V_{GS}$ | Gate-to-Source Voltage | ± 16 | ٧ | | E <sub>AS</sub> | Single Pulse Avalanche Energy (Thermally Limited) <sup>②</sup> | 180 | mJ | | E <sub>AS</sub> (tested ) | Single Pulse Avalanche Energy Tested Value ⑦ | 250 | | | I <sub>AR</sub> | Avalanche Current ① | See Fig. 12a, 12b, 15, 16 | Α | | E <sub>AR</sub> | Repetitive Avalanche Energy ® | | mJ | | dv/dt | Peak Diode Recovery dv/dt 3 | 2.3 | V/ns | | TJ | Operating Junction and | -55 to + 175 | | | T <sub>STG</sub> | Storage Temperature Range | | °C | | | Soldering Temperature, for 10 seconds (1.6mm from case) | 300 | | ### Thermal Resistance | morma, neolocario | | | | | | | | |-------------------|----------------------------------|------|------|-------|--|--|--| | | Parameter | Тур. | Max. | Units | | | | | $R_{ heta JC}$ | Junction-to-Case ® | | 1.3 | | | | | | $R_{\theta JA}$ | Junction-to-Ambient (PCB Mount)® | | 40 | °C/W | | | | | $R_{\theta JA}$ | Junction-to-Ambient | | 110 | | | | | HEXFET® is a registered trademark of International Rectifier. <sup>\*</sup>Qualification standards can be found at http://www.irf.com/ ### Static Electrical Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | |-----------------------------------|--------------------------------------|------|-------|------|-------|-----------------------------------------------------------| | V <sub>(BR)DSS</sub> | Drain-to-Source Breakdown Voltage | 80 | | | V | $V_{GS} = 0V, I_D = 250\mu A$ | | $\Delta V_{(BR)DSS}/\Delta T_{J}$ | Breakdown Voltage Temp. Coefficient | | 0.085 | | V/°C | Reference to 25°C, I <sub>D</sub> = 1mA | | R <sub>DS(on)</sub> | Static Drain-to-Source On-Resistance | | 22.5 | 28 | | V <sub>GS</sub> = 10V, I <sub>D</sub> = 23A ⊕ | | | | | 25 | 30 | mΩ | V <sub>GS</sub> = 4.5V, I <sub>D</sub> = 20A <sup>⊕</sup> | | $V_{GS(th)}$ | Gate Threshold Voltage | 1.0 | | 2.5 | V | $V_{DS} = V_{GS}, I_D = 250 \mu A$ | | gfs | Forward Transconductance | 35 | | | S | $V_{DS} = 25V, I_{D} = 23A$ | | I <sub>DSS</sub> | Drain-to-Source Leakage Current | | | 20 | μΑ | $V_{DS} = 80V, V_{GS} = 0V$ | | | | | | 250 | 1 | $V_{DS} = 80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ | | I <sub>GSS</sub> | Gate-to-Source Forward Leakage | | | 200 | nA | V <sub>GS</sub> = 16V | | | Gate-to-Source Reverse Leakage | | | -200 | 1 | V <sub>GS</sub> = -16V | ### Dynamic Electrical Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | |-----------------------|----------------------------------|------|------|------|-------|------------------------------------------| | $Q_g$ | Total Gate Charge | | 22 | 33 | | $I_D = 23A$ | | $Q_{gs}$ | Gate-to-Source Charge | | 6.0 | 9.1 | nC | $V_{DS} = 64V$ | | $Q_{gd}$ | Gate-to-Drain ("Miller") Charge | | 11 | 17 | | V <sub>GS</sub> = 4.5V ⊕ | | t <sub>d(on)</sub> | Turn-On Delay Time | | 12 | | | $V_{DD} = 40V$ | | t <sub>r</sub> | Rise Time | | 95 | | | $I_D = 23A$ | | t <sub>d(off)</sub> | Turn-Off Delay Time | | 36 | | ns | $R_G = 8.3\Omega$ | | t <sub>f</sub> | Fall Time | l | 55 | | | V <sub>GS</sub> = 4.5V ⊕ | | L <sub>D</sub> | Internal Drain Inductance | | 4.5 | | | Between lead, | | | | | | | nΗ | 6mm (0.25in.) | | L <sub>S</sub> | Internal Source Inductance | | 7.5 | | | from package | | | | | | | | and center of die contact | | C <sub>iss</sub> | Input Capacitance | | 1890 | | | $V_{GS} = 0V$ | | Coss | Output Capacitance | | 260 | | pF | $V_{DS} = 25V$ | | C <sub>rss</sub> | Reverse Transfer Capacitance | | 35 | | | f = 1.0MHz, See Fig. 5 | | Coss | Output Capacitance | | 1920 | | | $V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$ | | Coss | Output Capacitance | | 170 | | | $V_{GS} = 0V, V_{DS} = 64V, f = 1.0MHz$ | | C <sub>oss</sub> eff. | Effective Output Capacitance (9) | | 310 | | | $V_{GS} = 0V$ , $V_{DS} = 0V$ to $64V$ | ### **Diode Characteristics** | | Parameter | Min. | Тур. | Max. | Units | Conditions | |-----------------|---------------------------|------------|---------|---------|----------|-----------------------------------------------------| | I <sub>S</sub> | Continuous Source Current | | | 399 | | MOSFET symbol | | | (Body Diode) | | | | Α | showing the | | I <sub>SM</sub> | Pulsed Source Current | | _ | 150 | | integral reverse | | | (Body Diode) ① | | | | | p-n junction diode. | | $V_{SD}$ | Diode Forward Voltage | | | 1.3 | V | $T_J = 25^{\circ}C$ , $I_S = 23A$ , $V_{GS} = 0V$ ④ | | t <sub>rr</sub> | Reverse Recovery Time | | 75 | 110 | ns | $T_J = 25^{\circ}C$ , $I_F = 23A$ , $V_{DD} = 25V$ | | Q <sub>rr</sub> | Reverse Recovery Charge | | 210 | 310 | nC | di/dt = 100A/μs ④ | | t <sub>on</sub> | Forward Turn-On Time | Intrinsion | turn-or | time is | negligib | le (turn-on is dominated by LS+LD) | ### Notes: - ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). - ② Limited by $T_{Jmax}$ , starting $T_J = 25^{\circ}C$ , L = 0.71mH, $R_G = 25\Omega$ , $I_{AS} = 23A$ , $V_{GS} = 10V$ . Part not recommended for use above this value. - $\label{eq:loss_def} \mbox{ } \mbox{I}_{SD} \! \leq \! 23A, \, \mbox{di/dt} \! \leq \! 400A/\mu s, \, \mbox{V}_{DD} \! \leq \! \mbox{V}_{(BR)DSS}, \, \mbox{T}_{J} \! \leq \! 175^{\circ} \mbox{C}.$ - 4 Pulse width $\leq$ 1.0ms; duty cycle $\leq$ 2%. - $\odot$ Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. - 6 Limited by $T_{Jmax}$ , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. - $\ \$ This value determined from sample failure population, starting T<sub>J</sub> = 25°C, L = 0.71mH, R<sub>G</sub> = 25 $\Omega$ , I<sub>AS</sub> = 23A, V<sub>GS</sub> =10V. - When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. - Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 30A. - 1 R<sub> $\theta$ </sub> is measured at T<sub>J</sub> of approximately 90°C. ## Qualification Information<sup>†</sup> | | | Automotive | | | | |-----------|----------------------|--------------------------------------------------------------------------------------------------------------------------|--------------|--|--| | | | (per AEC-Q101) <sup>††</sup> | | | | | Qualifica | tion Level | Comments: This part number(s) passed Automotive qualification level is granted extension of the higher Automotive level. | | | | | Moisture | Sensitivity Level | D-Pak MSL1 | | | | | | Machine Model | Class M3 (+/- 400V) ††† | | | | | | | | AEC-Q101-002 | | | | FOR | Human Body Model | Class H1C (+/- 1500V) ††† | | | | | ESD | | AEC-Q101-001 | | | | | | Charged Device Model | Class C5 (+/- 2000V) ††† | | | | | | | | AEC-Q101-005 | | | | RoHS Co | mpliant | Yes | | | | - † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/ - †† Exceptions (if any) to AEC-Q101 requirements are noted in the qualification report. - ††† Highest passing voltage. Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance vs. Drain Current **Fig 5.** Typical Capacitance vs. Drain-to-Source Voltage **Fig 6.** Typical Gate Charge vs. Gate-to-Source Voltage Fig 8. Maximum Safe Operating Area Fig 9. Maximum Drain Current vs. Case Temperature **Fig 10.** Normalized On-Resistance vs. Temperature Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case Fig 12a. Unclamped Inductive Test Circuit Fig 12b. Unclamped Inductive Waveforms Fig 13a. Basic Gate Charge Waveform We will be sent to the sent of Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 14. Threshold Voltage vs. Temperature Fig 15. Typical Avalanche Current vs. Pulsewidth # Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com) - Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T<sub>jmax</sub>. This is validated for every part type. - 2. Safe operation in Avalanche is allowed as long $\mbox{asT}_{\mbox{\scriptsize jmax}}$ is not exceeded. - Equation below based on circuit and waveforms shown in Figures 12a, 12b. - 4. P<sub>D (ave)</sub> = Average power dissipation per single avalanche pulse. - 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). - 6. I<sub>av</sub> = Allowable avalanche current. - 7. $\Delta T$ = Allowable rise in junction temperature, not to exceed $T_{jmax}$ (assumed as 25°C in Figure 15, 16). - t<sub>av =</sub> Average time in avalanche. - $D = Duty cycle in avalanche = t_{av} \cdot f$ $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11) $$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot \text{BV} \cdot \text{I}_{av}) = \triangle \text{T/} \; Z_{thJC} \\ I_{av} &= 2\triangle \text{T/} \; [1.3 \cdot \text{BV} \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$ **Fig 16.** Maximum Avalanche Energy vs. Temperature 8 Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Fig 18a. Switching Time Test Circuit Fig 18b. Switching Time Waveforms # D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) - 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 - 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS]. - A- LEAD DIMENSION UNCONTROLLED IN L5. - DIMENSON D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD. SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP. - DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE, THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY, DIMENSION b1 & c1 APPLIED TO BASE METAL ONLY. - A DATUM A & B TO BE DETERMINED AT DATUM PLANE H. - 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA. | S<br>Y<br>M | | N | | | | |-------------|--------|-------|------|------|--------| | B | MILLIM | ETERS | INC | O T | | | 0<br>L | MIN. | MAX. | MIN. | MAX. | E<br>S | | Α | 2.18 | 2.39 | .086 | .094 | | | A1 | - | 0.13 | - | .005 | | | ь | 0.64 | 0.89 | .025 | .035 | | | ь1 | 0.65 | 0.79 | .025 | .031 | 7 | | b2 | 0.76 | 1.14 | .030 | .045 | | | b3 | 4.95 | 5.46 | .195 | .215 | 4 | | c | 0.46 | 0.61 | .018 | .024 | | | c1 | 0.41 | 0.56 | .016 | .022 | 7 | | c2 | 0.46 | 0.89 | .018 | .035 | | | D | 5.97 | 6.22 | .235 | .245 | 6 | | D1 | 5.21 | - | .205 | - | 4 | | E | 6,35 | 6.73 | .250 | .265 | 6 | | E1 | 4.32 | - | .170 | - | 4 | | e | 2.29 | BSC | .090 | BSC | | | н | 9,40 | 10,41 | .370 | ,410 | | | L | 1.40 | 1.78 | .055 | .070 | | | L1 | 2,74 | BSC | .108 | REF, | | | L2 | 0.51 | BSC | ,020 | BSC | | | L3 | 0.89 | 1.27 | .035 | .050 | 4 | | L4 | - | 1.02 | - | .040 | | | L5 | 1,14 | 1.52 | .045 | .060 | 3 | | ø | 0- | 10* | 0- | 10* | | | ø1 | 0. | 15* | 0" | 15* | | | ø2 | 25* | 35* | 25* | 35* | | ### LEAD ASSIGNMENTS ### HEXFET - 1.- GATE 2.- DRAIN - 3.- SOURCE 4.- DRAIN ### IGBT & CoPAK - 1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR # D-Pak Part Marking Information # D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) ### NOTES: - 1. CONTROLLING DIMENSION: MILLIMETER. - 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES). - 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. ### NOTES: 1. OUTLINE CONFORMS TO EIA-481. # **Ordering Information** | Base part number | Package Type | Standard Pack | | Complete Part Number | |------------------|--------------|---------------------|----------|----------------------| | | | Form | Quantity | | | AUIRLR2908 | Dpak | Tube | 75 | AUIRLR2908 | | | | Tape and Reel | 2000 | AUIRLR2908TR | | | | Tape and Reel Left | 3000 | AUIRLR2908TRL | | | | Tape and Reel Right | 3000 | AUIRLR2908TRR | ### **IMPORTANTNOTICE** Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment. IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards. Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements. IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product. Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements. For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/ ### WORLDHEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245 Tel: (310) 252-7105