
AUTOMOTIVE GRADE

AUIRLL024Z

Features HEXFET® Power MOSFET

Advanced Process Technology

- Ultra Low On-Resistance
- 150°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Timax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

V _{(BR)DSS}	55V	
R _{DS(on)}	typ.	48m $Ω$
	max.	60m Ω
I _D		5.0A

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

G	D	S
Gate	Drain	Source

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ⑦	5.0	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ⑦	4.0	Α
I _{DM}	Pulsed Drain Current ①	40	
P _D @T _A = 25°C	Power Dissipation ⑦	2.8	
P _D @T _A = 25°C	Power Dissipation ®	1.0	W
	Linear Derating Factor ②	0.02	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	21	mJ
E _{AS} (tested)	Single Pulse Avalanche Energy Tested Value ®	38	
I _{AR}	Avalanche Current ①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy ©		mJ
T_{J}	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient (PCB mount, steady state) ♡		45	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB mount, steady state) ®		120	

HEXFET® is a registered trademark of International Rectifier.

^{*}Qualification standards can be found at http://www.irf.com/

Static Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.049		V/°C	Reference to 25°C, I _D = 1mA
			48	60		V _{GS} = 10V, I _D = 3.0A ③
R _{DS(on)}	Static Drain-to-Source On-Resistance			80	mΩ	$V_{GS} = 5.0V, I_D = 3.0A$ ③
				100		$V_{GS} = 4.5V, I_D = 3.0A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Transconductance	7.5			S	$V_{DS} = 25V, I_D = 3.0A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 55V$, $V_{GS} = 0V$
				250		$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-200		V _{GS} = -16V

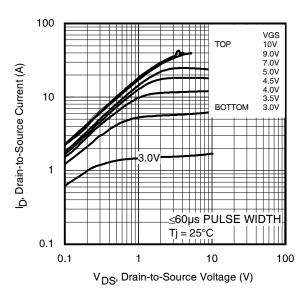
Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Q_g	Total Gate Charge		7.0	11		$I_D = 3.0A$
Q_{gs}	Gate-to-Source Charge		1.5		nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		4.0			V _{GS} = 5.0V ③
t _{d(on)}	Turn-On Delay Time		8.6			$V_{DD} = 28V$
t _r	Rise Time		33		ns	$I_{D} = 3.0A$
t _{d(off)}	Turn-Off Delay Time		20			$R_G = 56 \Omega$
t _f	Fall Time		15			V _{GS} = 5.0V ③
C _{iss}	Input Capacitance		380			$V_{GS} = 0V$
C _{oss}	Output Capacitance		66			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		36		pF	f = 1.0MHz
C _{oss}	Output Capacitance		220			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		53			$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		93			$V_{GS} = 0V$, $V_{DS} = 0V$ to 44V $\textcircled{4}$

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			5.0		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			40		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 3.0A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		15	23	ns	$T_J = 25^{\circ}C$, $I_F = 3.0A$, $V_{DD} = 28V$
Q _{rr}	Reverse Recovery Charge		9.1	14	nC	di/dt = 100A/µs ③
t _{on}	Forward Turn-On Time	Intrinsi	c turn-or	time is	negligible	e (turn-on is dominated by LS+LD)

Notes:


- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L = 4.8 mH $R_G = 25\Omega$, $I_{AS} = 3.0A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
- ® This value determined from sample failure population, starting T_J = 25°C, L = 4.8mH, R_G = 25Ω, I_{AS} = 3.0A, V_{GS} =10V.
- When mounted on 1 inch square copper board.
- When mounted on FR-4 board using minimum recommended footprint.

Qualification Information[†]

			Automotive				
		(per AEC-Q101)					
Qualification Level		Comments: This part number(s) passed Automo qualification. IR's Industrial and Consumer qualificat level is granted by extension of the higher Automo level.					
Moisture Sensitivity	Level	SOT-223 MSL1					
	Machine Model		Class M1B (+/- 100V) ^{††}				
		AEC-Q101-002					
	Human Body Model		Class H0 (+/- 250V) ^{††}				
ESD		AEC-Q101-001					
Charged Device Model		Class C5 (+/- 1125V) ^{††}					
		AEC-Q101-005					
RoHS Compliant		Yes					

[†] Qualification standards can be found at International Rectifier's web site: http://www.irf.com/

^{††} Highest passing voltage.

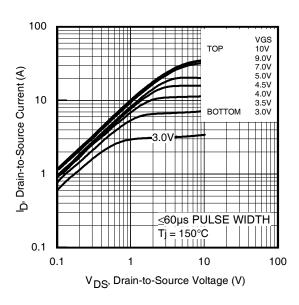
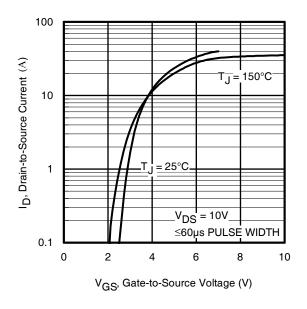



Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

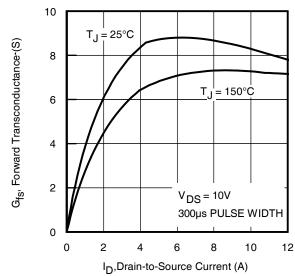


Fig 3. Typical Transfer Characteristics

Fig 4. Typical Forward Transconductance vs. Drain Current

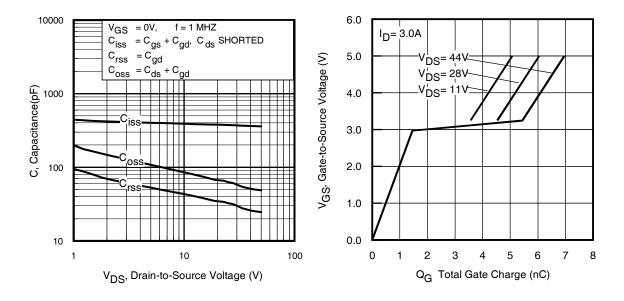


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

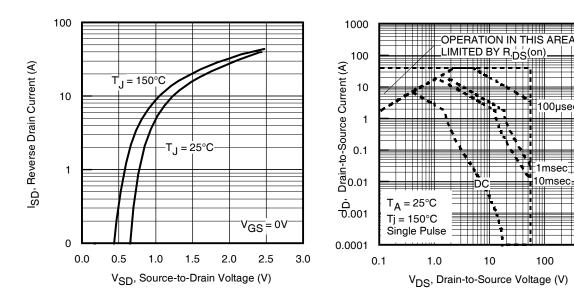
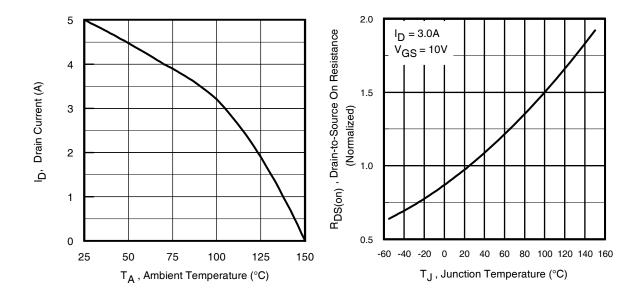



Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

1000.0

100

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 10. Normalized On-Resistance vs. Temperature

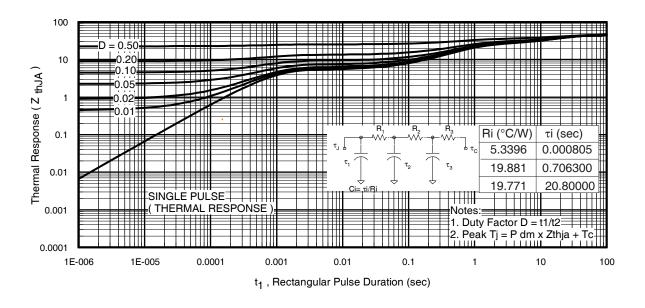


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

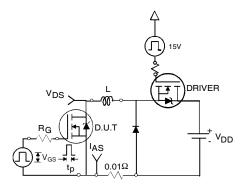


Fig 12a. Unclamped Inductive Test Circuit

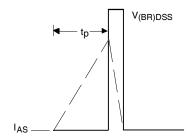


Fig 12b. Unclamped Inductive Waveforms

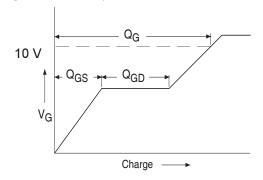
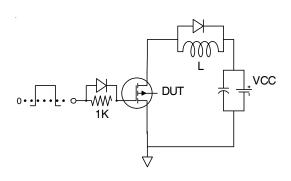



Fig 13a. Basic Gate Charge Waveform

100 E_{AS} , Single Pulse Avalanche Energy (mJ) Ь TOP 3.0A 80 0.80A BOTTOM 0.69A 60 40 20 0 25 50 75 100 125 150 Starting T_J , Junction Temperature (°C)

Fig 12c. Maximum Avalanche Energy vs. Drain Current

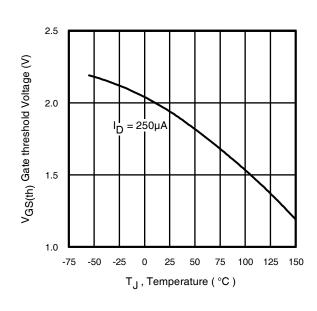


Fig 14. Threshold Voltage vs. Temperature

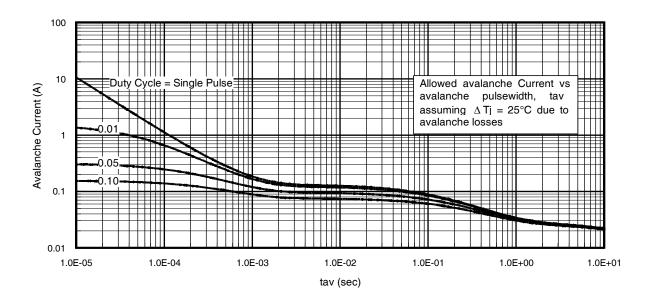
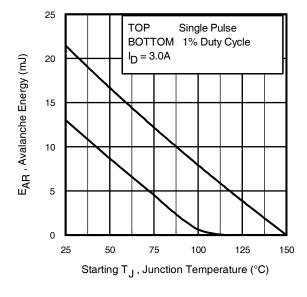



Fig 15. Typical Avalanche Current vs. Pulsewidth

D = Duty cycle in avalanche = $t_{av} \cdot f$ $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D~(ave)} &= 1/2~(~1.3 \cdot \text{BV} \cdot \text{I}_{av}) = \triangle \text{T/}~Z_{thJC} \\ I_{av} &= 2\triangle \text{T/}~[1.3 \cdot \text{BV} \cdot \text{Z}_{th}] \end{split}$$
 $E_{AS (AR)} = P_{D (ave)} \cdot t_{av}$

vs. Temperature

8

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
 - Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{imax} . This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is
- not exceeded. 3. Equation below based on circuit and waveforms shown in
- Figures 12a, 12b. 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).

7. ΔT = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 15, 16).

- 6. I_{av} = Allowable avalanche current.
 - t_{av} = Average time in avalanche.

Fig 16. Maximum Avalanche Energy

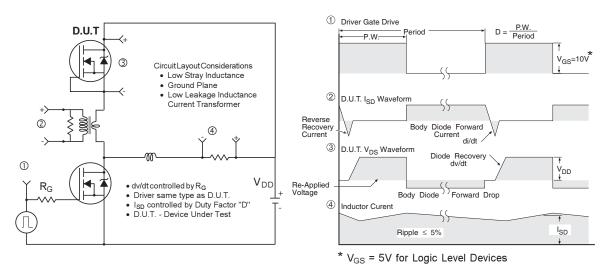


Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

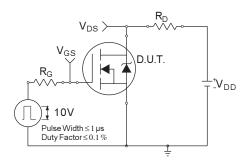


Fig 18a. Switching Time Test Circuit

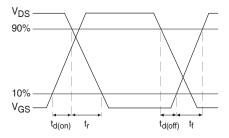
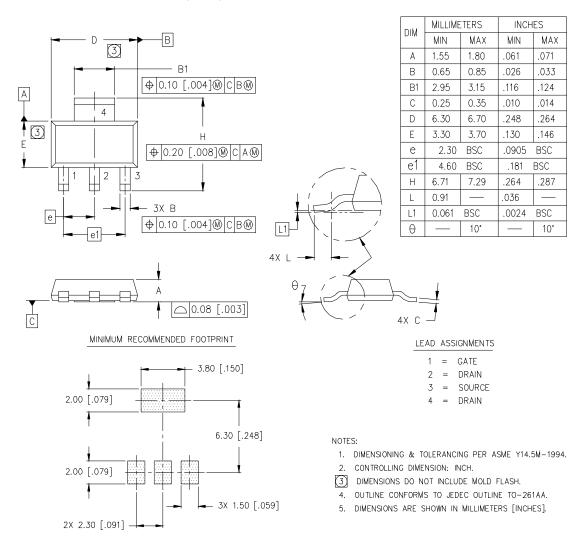
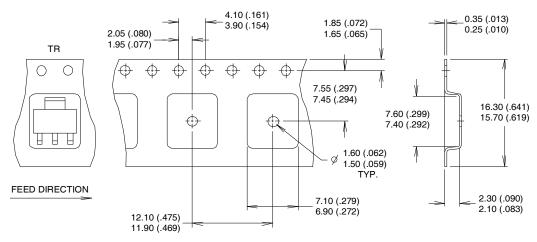



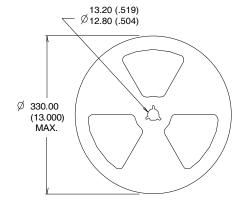
Fig 18b. Switching Time Waveforms

SOT-223 (TO-261AA) Package Outline

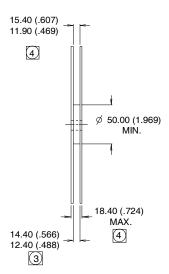
Dimensions are shown in milimeters (inches)


SOT-223 (TO-261AA) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/


SOT-223 (TO-261AA) Tape & Reel Information

Dimensions are shown in milimeters (inches)


NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
- 3. EACH Ø330.00 (13.00) REEL CONTAINS 2,500 DEVICES.

NOTES:

- 1. OUTLINE COMFORMS TO EIA-418-1.
- 2. CONTROLLING DIMENSION: MILLIMETER...
- DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Ordering Information

Base part	Package Type	Standard Pack		Complete Part Number
		Form	Quantity	
AUIRLL024Z	SOT-223	Tube	95	AUIRLL024Z
		Tape and Reel	2500	AUIRLL024ZTR

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLDHEADQUARTERS:

101 N. Sepulveda Blvd., El Segundo, California 90245 Tel: (310) 252-7105