International **TCR** Rectifier

January 14, 2011

Automotive Grade AUIRS2301S HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600V
- Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 5V to 20V
- Undervoltage lockout for both channels
- 3.3V, 5V and 15V input logic compatible
- Matched propagation delay for both channels
- Outputs in phase with inputs
- Lower di/dt gate driver for better noise immunity
- Leadfree, RoHS compliant
- Automotive qualified*

Typical Applications

- Automotive motor drives
- o Servo drives
- o Micro inverter drives
- o General purpose three phase inverters

Product Summary

V _{OFFSET}	600V Max
V _{OUT}	5V – 20V
I _{o+} & I _{o-} (typical)	200mA / 350mA
t _{ON} & t _{OFF} (typical)	220ns / 200ns
Delay Matching	50ns

Package Options

Table of Contents	Page
Typical Connection Diagram	1
Description	3
Feature Comparison	3
Qualification Information	4
Absolute Maximum Ratings	5
Recommended Operating Conditions	5
Dynamic Electrical Characteristics	6
Static Electrical Characteristics	6
Functional Block Diagram	7
Input/output Timing Diagram	8
Lead Definitions	9
Lead Assignments	9
Application Information and Additional Details	10
Parameter Temperature Trends	12 - 14
Package Details	15
Tape and Reel Details	16
Part Marking Information	17
Ordering Information	17
Important Notice	18

International

Description

The AUIRS2301S is a high voltage, high speed power MOSFET and IGBT driver with independent high- and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600V.

Qualification Information[†]

		Automotive (per AEC-Q100 ^{††})				
Qualification Level		Comments: This family of ICs has passed an				
		Automotive qualification. IR's Industrial and Consumer				
		qualification level is granted by extension of the higher				
		Automotive level.				
Mojeturo Sensitivity Leo	vol	MSL3 ^{†††} 260°C				
Moisture Sensitivity Level		(per IPC/JEDEC J-STD-020)				
	Machina Madal	Class M2 (Pass +/-200V)				
	Machine Model	(per AEC-Q100-003)				
ESD	Human Dady Madal	Class H1C (Pass +/-2000V)				
230	Human Body Model	(per AEC-Q100-002)				
	Charged Device Medel	Class C5 (Pass +/-1000V)				
	Charged Device Model	(per AEC-Q100-011)				
IC Leteh Un Teet		Class II, Level B				
ic Lattin-op rest		(per AEC-Q100-004)				
RoHS Compliant		Yes				

† Qualification standards can be found at International Rectifier's web site <u>http://www.irf.com/</u>

tt Exceptions to AEC-Q100 requirements are noted in the qualification report.

+++ Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating absolute voltage	-0.3	625	
Vs	High-side floating supply offset voltage	V _B - 25	V _B + 0.3	
V _{HO}	High-side floating output voltage	V _S -0.3	V _B + 0.3	V
V _{cc}	Low-side and logic fixed supply voltage	-0.3	25	v
V _{LO}	Low-side output voltage	-0.3	V _{CC} + 0.3	
V _{IN}	Logic input voltage (HIN & LIN)	COM -0.3	V _{CC} + 0.3	
dV _S /dt	Allowable offset supply voltage transient	—	50	V/ns
PD	Package power dissipation @ TA $\leq 25^{\circ}$ C	—	0.625	W
Rth _{JA}	Thermal resistance, junction to ambient	_	200	°C/W
TJ	Junction temperature	—	150	
Ts	Storage temperature	-50	150	°C
TL	Lead temperature (soldering, 10 seconds)	_	300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_s offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating supply absolute voltage	V _S + 5	V _S + 20	
Vs	High-side floating supply offset voltage	† 1	600	
V _{HO}	High-side floating output voltage	Vs	V _B	V
V _{cc}	Low-side and logic fixed supply voltage	5	20	v
V _{LO}	Low-side output voltage	0	V _{CC}	
V _{IN}	Logic input voltage (HIN & LIN)	COM	V _{CC}	
T _A	Ambient temperature	-40	125	°C

 Logic operational for V_S of -5 V to +600 V. Logic state held for V_S of -5 V to - V_{BS}. (Please refer to the Design Tip DT97 -3 for more details).

Static Electrical Characteristics

Unless otherwise noted, these specifications apply for an operating junction temperature range of -40°C \leq Tj \leq 125°C with bias conditions of V_{BIAS} (V_{CC}, V_{BS}) = 15V. The V_{IL}, V_{IH} and I_{IN} parameters are referenced to COM and are applicable to the respective input leads: HIN and LIN. The V_O, I_O and R_{on} parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min	Тур	Мах	Units	Test conditions	
V _{IH}	Logic "1" input voltage	2.5			V	1/10 = 101/10201/	
V _{IL}	Logic "0" input voltage			0.8	v	$v_{\rm CC} = 100 10 200$	
V _{OH}	High level output voltage, V_{BIAS} - V_O			0.2	V	I. − 2mA	
V _{OL}	Low level output voltage, V_{O}			0.1	v	1 ₀ – 211A	
I _{LK}	Offset supply leakage current			50		$V_{\rm B} = V_{\rm S} = 600 V$	
I _{QBS}	Quiescent V _{BS} supply current	60	160	260		$V_{\rm m} = 0 V_{\rm or} 5 V_{\rm c}$	
I _{QCC}	Quiescent V _{CC} supply current	60	160	260	μA	$v_{\rm IN} = 000150$	
I _{IN+}	Logic "1" input bias current		5	20		$V_{IN} = 5V$	
I _{IN-}	Logic "0" input bias current	—		5		$V_{IN} = 0V$	
V_{CCUV+} V_{BSUV+}	V_{CC} and V_{BS} supply undervoltage positive going threshold	3.3	4.1	5			
V _{CCUV-} V _{BSUV-}	V_{CC} and V_{BS} supply undervoltage negative going threshold	3	3.8	4.7	v		
V _{CCUVH} V _{BSUVH}	Hysteresis	0.1	0.3	_			
I _{O+}	Output high short circuit pulsed current		200		m۸	V _O = 0V, PW ≤ 10µs	
I _{O-}	Output low short circuit pulsed current	_	350			V _O = 15V, PW ≤ 10µs	

Dynamic Electrical Characteristics

Unless otherwise noted, these specifications apply for an operating junction temperature range of -40°C \leq Tj \leq 125°C with bias conditions of V_{BIAS} (V_{CC}, V_{BS}) = 15 V, C_L = 1000 pF.

Symbol	Definition	Min	Тур	Max	Units	Test conditions
t _{on}	Turn-on propagation delay	_	220	300		$V_{\rm S}$ = 0V
t _{off}	Turn-off propagation delay	_	200	280		$V_{\rm S}$ = 0V or 600V
MT	Delay matching, HS & LS turn-on/off	_	0	50	ns	
t _r	Turn-on rise time	_	130	220		$\gamma = 0\gamma$
t _f	Turn-off fall time	—	50	80		$v_{\rm S} = 0v$

International **tor** Rectifier

AUIRS2301S

Functional Block Diagram:

Input/Output Pin Equivalent Circuit Diagrams:

Lead Definitions:

PIN#	Symbol	Description
1	V _{CC}	Low-side and logic fixed supply
2	HIN	Logic input for high-side gate driver outputs (HO), in phase with HO
3	LIN	Logic input for low-side gate driver outputs (LO), in phase with LO
4	COM	Low-side return
5	LO	Low-side gate drive output
6	Vs	High-side floating supply return
7	HO	High-side gate drive output
8	V _B	High-side floating supply

Lead Assignments

Application Information and Additional Details

Figure 1: Input/Output Timing Diagram

Figure 2: Switching Time Waveform Definitions

Figure 3: Delay Matching Waveform Definitions

Tolerability to Negative VS Transients

The AUIRS2301S has been seen to withstand negative Vs transient conditions on the order of -25V for a period of 100 ns (V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C).

An illustration of the AUIRS2301S performance can be seen in Figure 4.

Even though the AUIRS2301S has been shown able to handle these negative Vs transient conditions, it is highly recommended that the circuit designer always limit the negative Vs transients as much as possible by careful PCB layout and component use.

Figure 4: -Vs Transient results

Parameter Temperature Trends

Figures illustrated in this chapter provide information on the experimental performance of the AUIRS2301S HVIC. The line plotted in each figure is generated from actual lab data. A large number of individual samples were tested at three temperatures (-40 °C, 25 °C, and 125 °C) in order to generate the experimental curve. The line consists of three data points (one data point at each of the tested temperatures) that have been connected together to illustrate the understood trend. The individual data points on the Typ. curve were determined by calculating the averaged experimental value of the parameter (for a given temperature).

Figure 5: T_{ON} vs. temperature

Figure 7: T_R vs. temperature

Figure 6: T_{OFF} vs. temperature

Figure 8: T_F vs. temperature

International **IOR** Rectifier

Figure 9: V_{cc} supply current vs. temperature

Figure 11: V_{CCUV+} vs. temperature

Figure 13: V_{BSUV+} vs. temperature

Figure 10: V_{BS} supply current vs. temperature

Figure 12: V_{CCUV-} vs. temperature

Figure 14: V_{BSUV-} vs. temperature

International **TOR** Rectifier

Figure 15: V_{OH} (I_O = 2mA) vs. temperature

Figure 16: V_{OL} (I_O = 2mA) vs. temperature

Figure 18: Logic "0" input bias current vs. temperature

Figure 19: Offset leakage current vs. temperature

Package Details

Tape and Reel Details

CARRIER TAPE DIMENSION FOR 8SOICN

	Metric		Imp	erial
Code	Min	Max	Min	Max
A	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 8SOICN

	Metric		Imp	erial
Code	Min	Max	Min	Max
A	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Part Marking Information

Ordering Information

		Standard Pack		Complete Dart Number	
Base Part Number	Раскаде Туре	Form Quant		Complete Part Number	
	SOICS	Tube/Bulk	95	AUIRS2301S	
AUIRS2301	30108	Tape and Reel	2500	AUIRS2301STR	

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or "enhanced plastic." Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center <u>http://www.irf.com/technical-info/</u>

> WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Revision History

Date	Comment
11/18/08	New template, standard pack quantity corrected
	Removed Typical Applications section from the first page
	Changed $I_{O+} \& I_{O-}$ text from typ to min, min values were reported
12/1/08	Updated all parameters to reflect the previously released Gen2 part, modifications can be made
	at a later date if need be
	Imported correct I/O diagrams
12/9/08	Added Pin# in lead assignment table and changed the order
2/6/09	Changed ESD/LU ratings to TBD pending data
3/3/9	Removed PDIP
	Removed "Parameter Temp Trend" section (updated page number references as well)
3/4/09	Modified page header to read "2301" in place of "2103"
	Changed IQCC from 50/120/190uA to 60/150/240uA
	Changed IQBS from 20/60/100uA to 60/150/240uA
6/2/09	Feature comparison removed on p3
	F front page: - HIGH AND LOW SIDE DRIVER IN place of HALF BRIDGE DRIVER (no cross
6/0/00	"I agia and power ground + 5V offact" contained removed (only COM exists as ground hin)
0/9/09	- Logic and power ground ± 5% onset semence removed (only COM exists as ground pin).
	Page 11: added this page with section "Telerability to Negative V/S Transients" (ADDL review)
7/2/00	Lindsted IOCC/IORS III to 260uA from 240uA
112109	Changed the year to 2000 in footer
	Removed "()" in the part number in the description and file name
7/9/09	Removed rows for PDIP in the Absolute Maximum Ratings
110/00	Removed min spec on lo+/lo- since we don't test this parameter on ATE
	Deleted "SOIC8" from gual table
7/15/09	$T_{\rm A}$ max temp changed from 150 to 125
7/28/09	Remove preliminary sign (DR3 approved)
7/30/09	Application section added in front page
9/8/09	ESD class modified MM M2 (was M3 based on the incorrect ESD summary)
9/14/09	Added ESD passing voltages
1/13/11	Added parameter temperature trends, updated test condition to tri-temp and important notice
1/14/11	Revised lo+/- to be typical value on front page