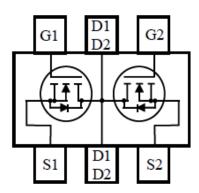


Description

Advanced trench process technology. High Density Cell Design For Ultra Low On-Resistance. High Power and Current handing capability. Fully Characterized Avalanche Voltage and Current. Small Surface Mount Package

Features

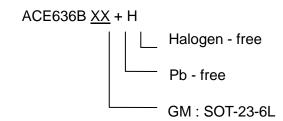
- V_{DS} 20V, I_D =6A
- $R_{DS(ON)}=22m\Omega @V_{GS}=4.5V$
- $R_{DS(ON)}=30m\Omega @V_{GS}=2.5V$
- For a single mosfet


Absolute Maximum Ratings

Parameter	Symbol	Max	Unit
Drain-Source Voltage	V_{DSS}	20	V
Gate-Source Voltage	V_{GSS}	±12	V
Drain Current (Note 1), Continuous	I _D	6	Α
Total Power Dissipation (Note1)	P _D	650	mW
Operating and Storage Temperature Range	T _J /T _{STG}	-55/150	°С

Note: Mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch.

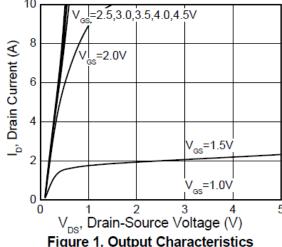
Packaging Type


SOT-23-6L

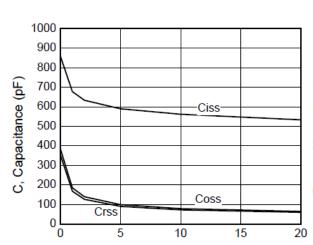
Ordering information

Electrical Characteristics

 $T_A\!\!=\!\!25^{\circ}\!\!\!\mathrm{C}$, unless otherwise noted.

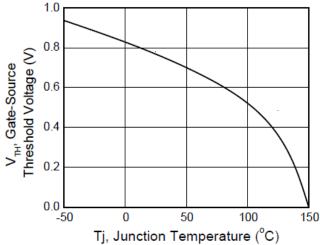

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
	Off c	haracteristics (Note 2)				
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} =0V, I_D =250 uA	20			V
Gate Leakage Current	I_{GSS}	V_{DS} =0 V , V_{GS} =±12 V			±100	uA
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V, V _{GS} =0V			1	uA
	(On characteristics				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{DS}=250uA$	0.6		1.2	V
Forward Transconductance	G_{FS}	V _{DS} =10V, I _D =6A	7	13		S
Static Drain-Source	R _{DS(ON)}	V _{GS} =4.5V, I _D =6A		22	50	mΩ
On-Resistance		V_{GS} =2.5V, I_D =5.2A		30	65	
Drain-So	urce Diode	Characteristics And Maximum Rat	ings			
Diode Forward Voltage	V_{SD}	$I_S=2A$, $V_{GS}=0V$	0.5	0.77	1	V
	Swi	tching characteristics				
Turn-On Delay Time	td(on)	$R_G=6\Omega$, $V_{DD}=10V$, $V_{GEN}=4.5V$, $I_D=1A$		18		nS
Turn-Off Delay Time	td(off)			25		
	Dyr	namic characteristics				
Input Capacitance	Ciss	V _{GS} =0V, V _{DS} =8V, f=1MHz		562		pF
Output Capacitance	Coss			106		
REVERSE Transfer Capacitance	Crss	v GS-O v, v DS-O v, 1-11VII 12		75		
Total Gate Charge	Q_{G}			4.86		nC
Gate-Source Charge	Q _{GS}	V_{DS} =10V, I_{D} =6A, V_{GS} =4.5V		0.92		
Gate-Drain	Q_GD			1.4		

Note: 2. Short duration test pulse used to minimize self-heating effect.



Typical Performance Characteristics

10 I_D, Drain current(A) 0.5 1.5 2 2.5 3 3.5 V_{GS}, Gate-to-source Voltage(V) Figure 2. Transfer Characteristics


Figure 1. Output Characteristics

0.20 ∨_{GS}=4.5V R_{DS(ON)}, Normalized R_{DS(ON)}, On Resistance (Ohm) 0.15 0.10 0.05 0.00 L -55 25 125 150

 V_{DS} , Drain-to-Source Voltage (V) Figure 3. Capacitance

Tj, Junction Temperature (°C) Figure 4. On Resistance Vs. Temperature

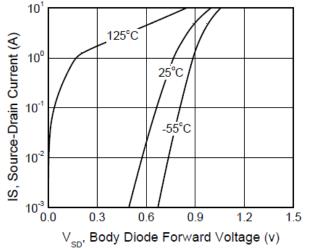
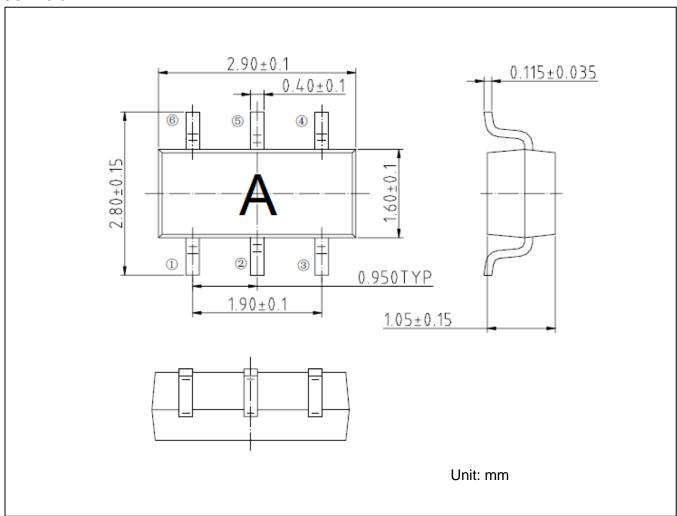


Figure 5. Gate Thershold Vs. Temperature


Figure 6. Body Diode Forward Voltage Vs. Source Current

Packing Information

SOT-23-6L

ACE636B

Common Drain Dual N-Channel Enhancement Mode Field Effect

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/