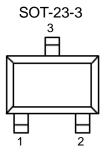


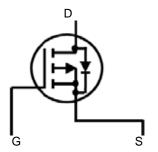
ACE3401B P-Channel Enhancement Mode Field Effect Transistor

Description

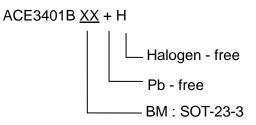
The ACE3401B uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation gate voltages as low as 2.5V. This device is suitable for use as a load switch or other general applications.


Features

- VDS(V)=-30V, ID=-4A
- RDS(ON)<43mΩ @ V_{GS}=-10V


Absolute Maximum Ratings

Parameter		Symbol	Max	Unit	
Drain-Source Vo	V_{DSS}	-30	V		
Gate-Source Vol	V_{GSS}	±12	V		
Drain Current (Continuous)	T _A =25 °C	I _D	-4	A	
	T _A =70 °C	۱D	-3.5		
Drain Current (P	I _{DM}	-30	Α		
Power Dissipation	T _A =25 °C	PD	1.4	W	
Operating and Storage Temperature Range		$T_{J,}T_{\text{STG}}$	-55 to 150	°C	


Packaging Type

SOT-23-3	Description		
1	Gate		
2	Source		
3	Drain		

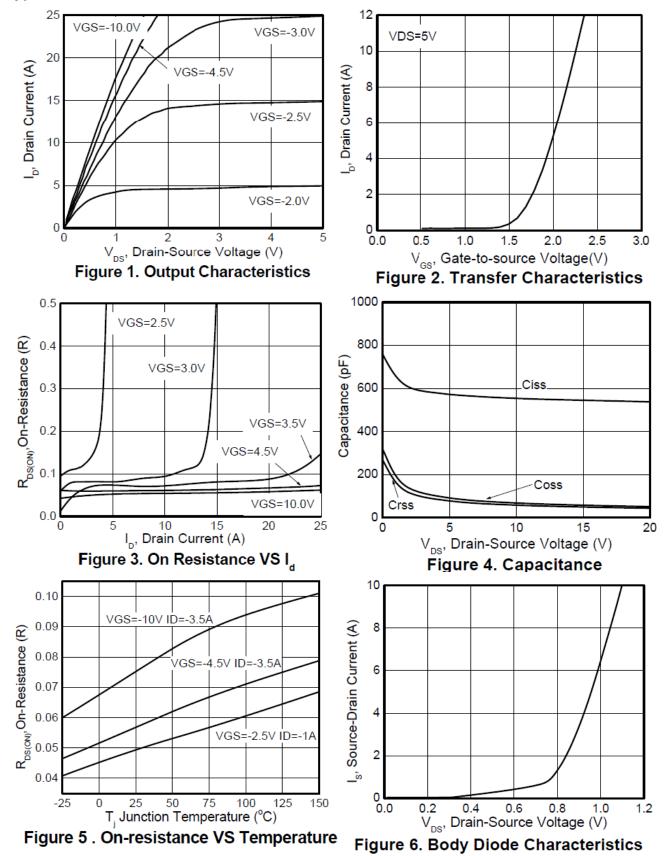
Ordering information

Electrical Characteristics

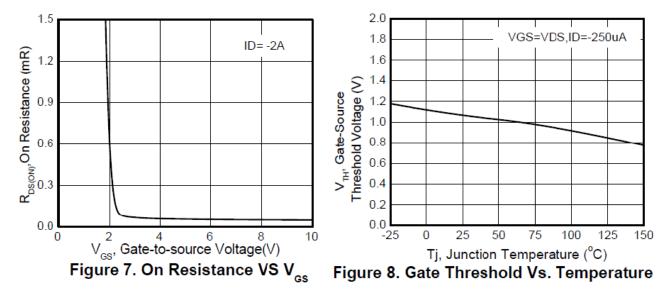
$T_A=25$ °C unless otherwise noted

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit				
On/Off characteristics										
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =-250uA	-30	-34		V				
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-30V, V _{GS} =0V			-1	uA				
Gate Leakage Current	I _{GSS}	V_{GS} =±12V, V_{DS} =0V			±100	nA				
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-4.2A			43	mΩ				
		V _{GS} =-4.5V, I _D =-4A			55					
		V _{GS} =-2.5V, I _D =-1A			110					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=-250uA$	-0.7	-1.0	-1.3	V				
Forward Transconductance	g fs	V _{DS} =-5V, I _D =-4A		15		S				
Drain Forward Voltage	V_{SD}	I _S =-1A,V _{GS} =0V		-0.78	-1	V				
Switching characteristics ⁽³⁾										
Total Gate Charge	Qg	V _{DS} =-15V, I _D =-4A V _{GS} =-4.5V		6.4	8.3	nC				
Gate-Source Charge	Q_{gs}			1.8	2.3					
Gate-Drain Charge	Q_{gd}			1.4	1.8					
Turn-On Delay Time	T _{d(on)}	V _{DD} =-15V,R _L =3.6Ω I _D =-1A, V _{GEN} =-10V R _G =6Ω		11.4	22.72					
Turn-On Rise Time	t _f			2.3	4.6	ns				
Turn-Off Delay Time	t _{d(off)}			34.9	69.8					
Turn-Off Fall Time	t _f			3.5	7					
	Dynamic	characteristics ⁽³⁾								
Input Capacitance	C _{iss}	V _{DS} =-15V, V _{GS} =0V f=1.0MHz		826		pF				
Output Capacitance	C _{oss}			90.7						
Reverse Transfer Capacitance	C _{rss}			53.2						

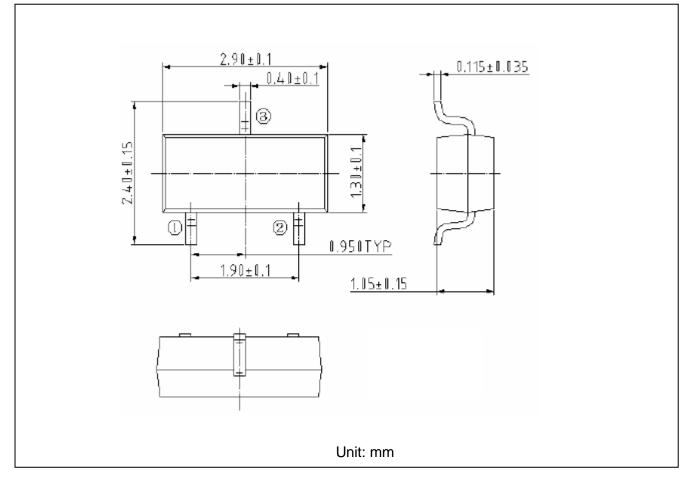
Note:


1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while R θ CA is determined by the user's board design.

2. Pulse Test: Pulse Width ≤µ300s, Duty Cycle≤ 2.0%


ACE3401B P-Channel Enhancement Mode Field Effect Transistor

Typical Performance Characteristics


Typical Performance Characteristics

Packing Information

SOT-23-3

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/