

Description

The ACE2310C uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltage as low as 2.5V. This device is suitable for use as a battery protection or in other switching application.

Features

- High power and current handing capability
- Lead free product is acquired
- Surface mount package

Applications

- Battery Switch
- DC/DC Converter

Absolute Maximum Ratings

Parameter	Symbol	Max	Unit
Drain-Source Voltage	V_{DS}	60	V
Gate-Source Voltage	V_{GS}	±20	V
Continuous Drain Current	I _D	3	Α
Pulsed Drain Current (note 1)	I _{DM}	10	Α
Power Dissipation	PD	0.35	W
Thermal Resistance from Junction to Ambient (note 2)	R _{θJA}	357	°C/W
Junction Temperature	TJ	150	്റ
Storage Temperature	T _{STG}	-55~150	

Packaging Type

Ordering information

Equivalent Circuit

VER 1.1 1

Electrical Characteristics (T_A=25 °C unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit				
STATIC CHARACTERISTICS										
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =-250uA	60			V				
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V			1	uA				
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V, V _{DS} =0V			±100	nA				
Gate threshold voltage (note 3)	$V_{GS(th)}$	V_{DS} = V_{GS} , I_D =250 μ A	0.5		2	V				
Drain-source on-resistance (note 3)	P	V_{GS} =10V, I_{D} =3A			105	mΩ				
	INDS(on)	V _{GS} =4.5V, I _D =3A			125					
Forward tranconductance (note 3)	g ^{FS}	V _{DS} =15V, I _D =2A	1.4			S				
Diode forward voltage (note 3)	V_{SD}	I_S =3A, V_{GS} = 0V			1.2	V				
DYNAMIC CHARACTERISTICS (note 4)										
Input Capacitance	C _{iss}			247		pF				
Output Capacitance	C _{oss}	V _{DS} =30V, V _{GS} =-0V F_1MHz		34		pF				
Reverse Transfer Capacitance	C _{rss}	1 – 11011 12		19.5		pF				
SWITCHING CHARACTERISTICS (note 4)										
Turn-on delay time	t _{d(on)}			6						
Turn-on rise time	t _r	V _{GS} =-10V, V _{DD} =30V		15		ns				
Turn-off delay time	$t_{d(off)}$	$I_D=1.5, R_{GEN}=1\Omega$		15						
Turn-off fall time	t _f			10						
Total Gate Charge	Q_{g}			6						
Gate-Source Charge	Q_gs	v _{DS} =3∪v, v _{GS} =-4.5V, I3∆		1		nC				
Gate-Drain Charge	Q_gd	1D2V		1.3]				

Note:

1. Repetitive rating : Pulse width limited by junction temperature.

2. Surface mounted on FR4 board , t≤10s.

3. Pulse Test : Pulse Width≤300µs, Duty Cycle≤0.5%.

4. Guaranteed by design, not subject to producting.

Typical Performance Characteristics

VER 1.1 3

125

T_=25°C

Pulsed

10

Packing Information

SOT-23-3

SOT-23-3 Suggested Pad Layoutg

Note:

1.Controlling dimension: in millimeters.

2.General tolerance:±0.05mm.

3. The pad layout is for reference purposes only.

SOT-23-3 Tape and Reel

Packaging Description: SOT-23 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 3,000 units per 7" or 17.8cm diameter reel. The reels are clear in color and is made of polystyrene plastic (anti-static coated).

Dimensions are in millimeter										
Pkg type	А	В	С	d	E	F	P0	Р	P1	W
SOT-23	3,15	2.77	1,22	Ø1.50	1.75	3,50	4.00	4.00	2.00	8.00
(Tolerance)	+/-0.1	+/-0.1	+/-0.1	+/-0.1	+/-0.1	+/-0.1	+/-0.1	+/-0.1	+/-0.1	+0.3/-0.1

SOT-23 Tape Leader and Trailer

Dimensions are in millimeter								
Reel Option	D	D1	D2	G	н	I	W1	W2
7"Dla	Ø178_00	54.40	13.00	R78.00	R25_60	R6_50	9.50	12.30
Tolerance	+/-2	+/-1	+/-1	+/-1	+/-1	+/-1	+/-1	+/-1

REEL	Ree Size	Box	Box Slze(mm)	Carton	Carton Size(mm)	G.W.(kg)
3000 pcs	7 Inch	45,000 pcs	203×203×195	180,000 pcs	438×438×220	

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/