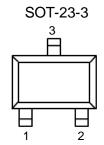
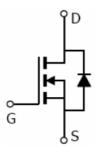


Description

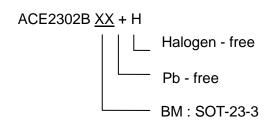
The ACE2302B uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V while retaining a 12V $V_{GS(MAX)}$ rating. This device is suitable for use as a uni-directional or bi-directional load switch.


Features

- V_{DS}=20V
- I_D=6A (V_{GS}=10V)
- RDS(ON)= $26m\Omega$ (typ.) @ V_{GS}=10V
- RDS(ON)= $28m\Omega$ (typ.) @ V_{GS}=4.5V
- RDS(ON)= $42m\Omega$ (typ.) @ V_{GS}=2.5V


Absolute Maximum Ratings

Parameter		Symbol	Max	Unit
Drain-Source Voltage		V_{DSS}	20	V
Gate-Source Voltage		V_{GSS}	±12	V
Drain Current (Continuous)	T _A =25°C	l _D	6	Α
	T _A =70°C	'D	4.8	_ ^
Drain Current (Pulsed)		I _{DM}	20	Α
Power Dissipation	T _A =25°C	P _D	1.4	W
Operating temperature / storage temperature		T _J /T _{STG}	-55~150	$^{\circ}\!\mathbb{C}$


Packaging Type

SOT-23-3	Description	Function		
1	G	Gate		
2	S	Source		
3	D	Drain		

Ordering information

Electrical Characteristics

 $T_A=25^{\circ}C$, unless otherwise specified

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
Static									
Drain-source breakdown voltage	$V_{(BR)DSS}$	V _{GS} =0V, I _D =250μA 20		24		V			
Zero gate voltage drain current	I _{DSS}	V _{DS} =20V, V _{GS} =0V			1	μΑ			
Gate threshold voltage	$V_{GS(th)}$	$V_{GS}=V_{DS}$, $I_{DS}=250\mu A$	0.6	0.74	1	V			
Gate leakage current	I_{GSS}	$V_{GS}=\pm 12V$, $V_{DS}=0V$			100	nA			
Drain-source on-state resistance	R _{DS(ON)}	V_{GS} =10V, I_D =6A		19.5	26	mΩ			
		V_{GS} =4.5 V , I_{D} =5 A		22.6	28				
		V_{GS} =2.5V, I_{D} =4A		31	42				
Forward transconductance	g FS	V_{DS} =10V, I_{D} =6A		5		S			
Diode forward voltage	V_{SD}	I_{SD} =1.7A, V_{GS} =0V		0.78	1	V			
Maximum body-diode continuous current	Is				1.7	Α			
Switching									
Total gate charge	Qg			6.3	8.1	nC			
Gate-source charge	Qgs	V_{GS} =4.5V, V_{DS} =10V, I_{D} =6A		1.7	2.2				
Gate-drain charge	Qgd	ID-OA		1.4	1.8				
Turn-on delay time	t _{d(on)}			10.4	20.8				
Turn-on rise time	Tr	V_{GS} =10V, I_{D} =1A		4.4	8.8	ns			
Turn-off delay time	t _{d(off)}	R_G =6 Ω , V_{GS} =4.5 V		27.4	54.8				
Turn-off fall time	Tf			4.2	8.4				
	D	ynamic	•						
Input capacitance	Ciss	V 0V V 0V		522.3					
Output capacitance	Coss	V_{GS} =0V, V_{DS} =8V, f=1.0MHz		98.5		pF			
Reverse transfer capacitance	Crss	1—1.0IVII 12		74.7					

Note:

- 1. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.
- 2. Repetitive rating, pulse width limited by junction temperature.
- 3. The current rating is based on the $t \le 10s$ junction to ambient thermal resistance rating.

Typical Performance Characteristics

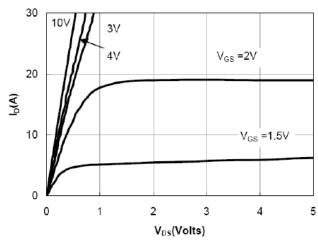


Figure 1: On-Regions CharacteristiCS

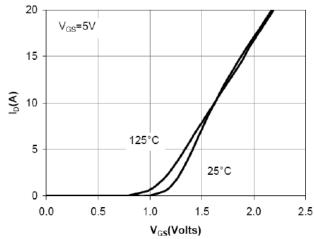


Figure 2: Transfer Characteristics

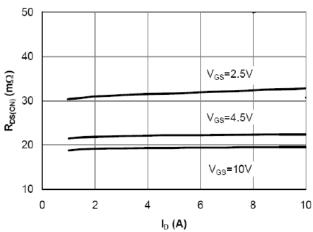


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

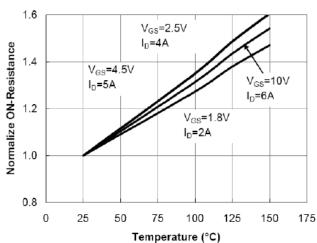


Figure 4: On-Resistance vs. Junction Temperature

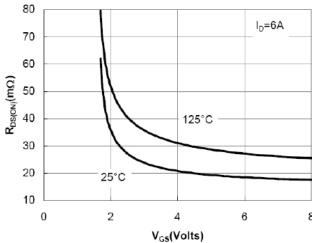


Figure 5: On-Resistance vs. Gate-Source Voltage

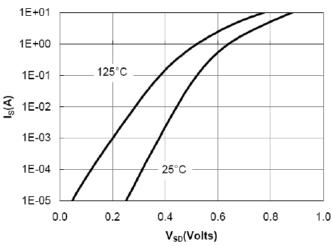
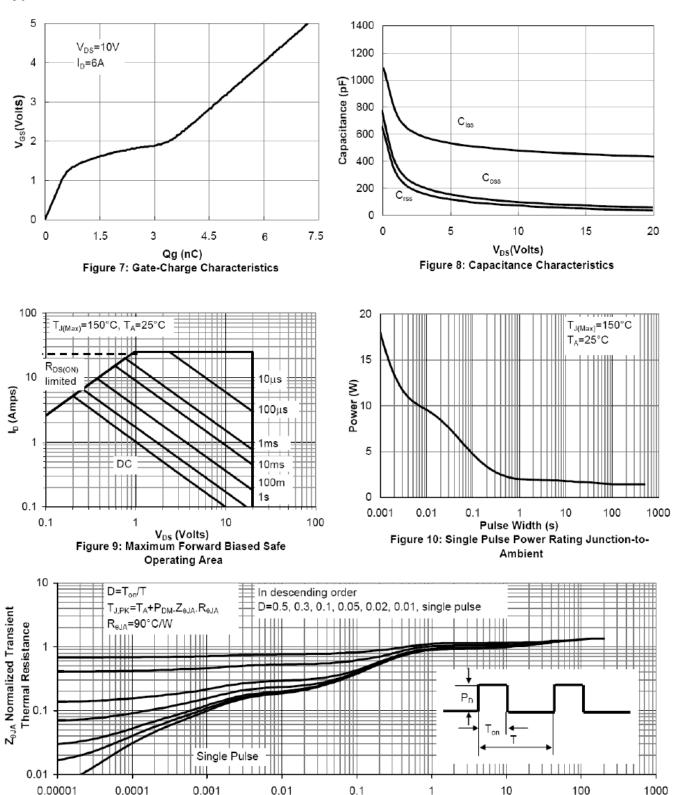
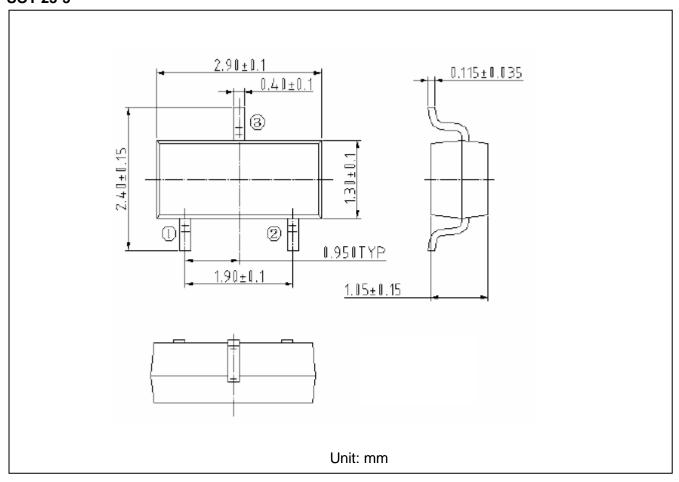



Figure 6: Body-Diode Characteristics

Typical Performance Characteristics



Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance

Packing Information

SOT-23-3

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/