

Description

The ACE432 is a low voltage three terminal adjustable shunt regulator with a guaranteed thermal stability over applicable temperature ranges. The output voltage can be set to any value between V_{REF})approximately 1.24V) to 8V with two external resistors.

The device has a typical output impedance of 0.30Ω . Active output circuitry provides a very sharp turn on characteristic, making this device excellent replacement for Zener diodes in many applications.

The ACE432 is characterized for operation from -40° C to 105° C, and two package options (SOT-23-3 and TO-92) allow the designer the opportunity to select the proper package for their applications.

Features

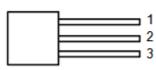
- Low voltage operation (1.24V)
- Adjustable output voltage V_D=V_{REF} to 8V
- Wide operating current range 60µA to 100mA
- Low dynamic output impedance 0.30Ω (Typ.)
- Trimmed bandgap design up ±0.5%
- ESD rating is 2.5KV (Per MIL-STD-883D)

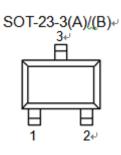
Application

- Linear Regulators
- Adjustable Supplies
- Switching Power Supplies
- Battery Operated Computers
- Instrumentation
- Computer Disk Drives

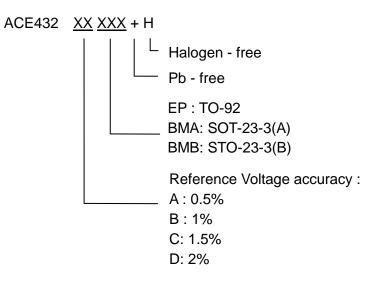
Absolute Maximum Ratings

Parameter	Symbol	Max	Unit
Cathode to Anode Voltage (Note 2)	V _{KA}	8	V
Continuous Cathode Current	I _{KA}	150	mA
Reference Input Current	I _{REF}	3	mA
Thermal resistance junction to ambient TO-92 SOT-23-3	θја	220 230	°C/W
Operating junction temperature	ΓJ	150	°C
Storage temperature range	Тѕтс	- 45 to 150	°C
Lead temperature (soldering) 10sec	TLEAD	260	°C


Note 1: Exceeding these rating could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.

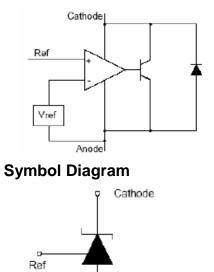

Note 2: Voltage values are with respect to the anode terminal unless otherwise noted.

Packaging Type


TO-92

Description	TO-92	SOT-23-3(A)	SOT-23-3(B)
Cathode	1	2	1
Anode	2	3	3
Ref	3	1	2
NC			

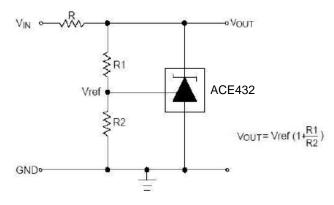
Ordering information

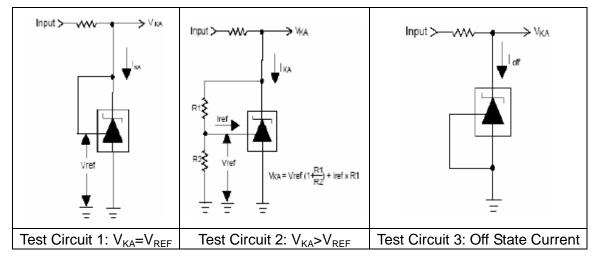

ACE432

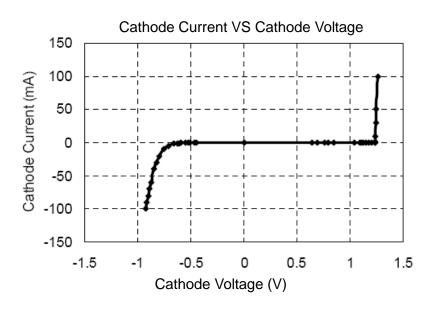
Precision adjustable shunt voltage reference

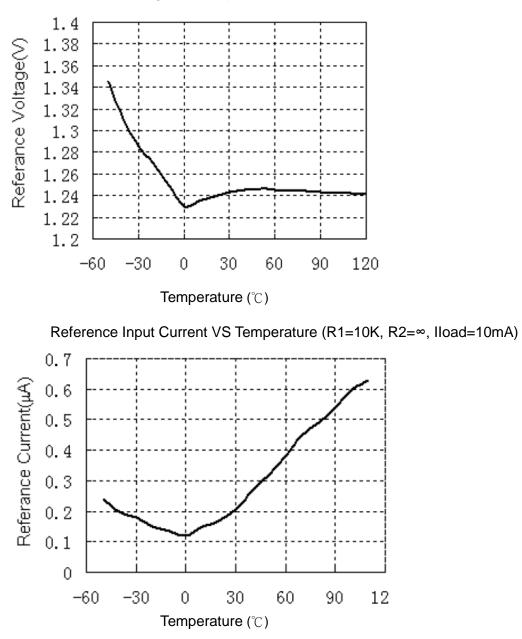
Electrical Characteristics

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Reference Voltage	0.5%	- V _{REF}	V _{KA} =V _{REF} , I _{KA} =10mA Test Circuit #1	1.234	1.240	1.246	V
	1.0%			1.228	1.240	1.252	
	1.5%			1.221	1.240	1.259	
	2.0%			1.215	1.240	1.265	
Deviation of reference over full temperature	-	V _{I(DEV)}	V _{KA} =V _{REF} , I _{KA} =10mA T _A =-40℃ to 105℃ Test Circuit #1		68		mV
Ratio of change in re voltage to the change in voltage		$\Delta V_{REF} / \Delta_{KA}$	I _{KA} =10mA ΔV _{KA} =8V to V _{REF} Test Circuit #2		1.0	2.7	mV/V
Reference curre	ent	I _{REF}	I _{KA} =10mA, R1=10KΩ, R2=∞ Test Circuit #2		0.15	2	μA
Deviation of Reference over full temperature		I _{I(DEV)}	I _{KA} =10mA, T _A =0°C to 105°C R1=10KΩ, R2=∞ Test Circuit #2		0.10		μA
Minimum cathode cur regulation	rrent for	I _{MIN}	V _{KA} =V _{REF} Test Circuit #1		60	100	μA
Off-state cathode c	urrent	I _{OFF}	V _{KA} =8V, V _{REF} =0 Test Circuit #3		0.04	0.8	μA
Dynamic impeda	nce	IZ _{ka} l	I _{κA} =100μA-80mA V _{KA} =V _{REF} , f≦1KHz Test Circuit #1		0.3	1.0	Ω

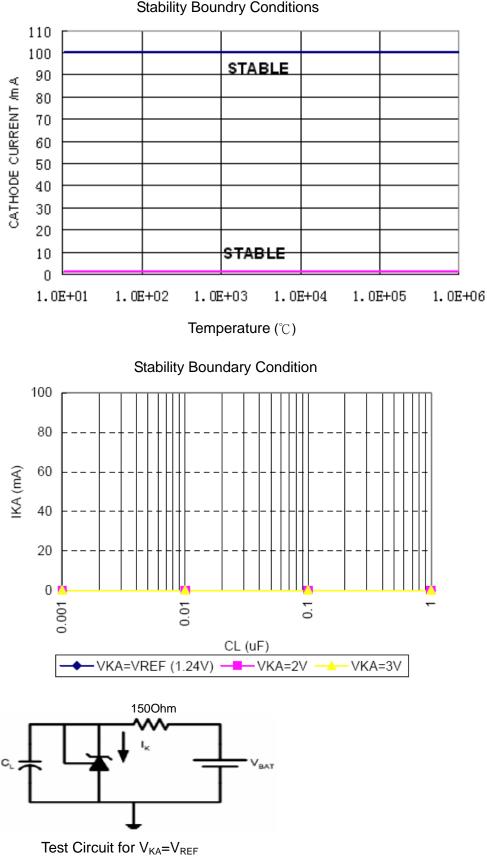

Block Diagram


Anode

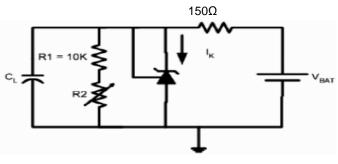

Typical Applications


Test Circuits

Typical Performance Characteristics

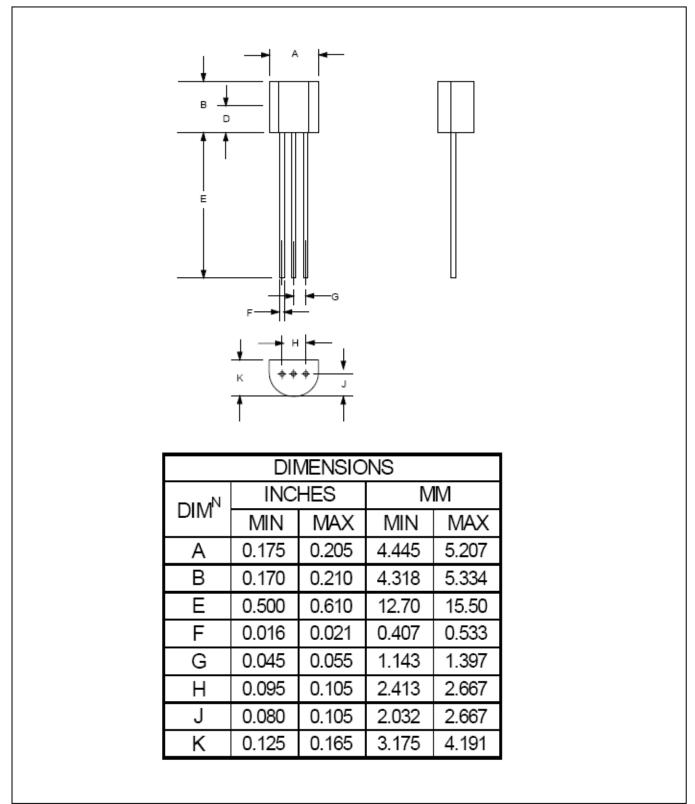


Reference Voltage VS Temperature (Iload=10mA)


ACE432

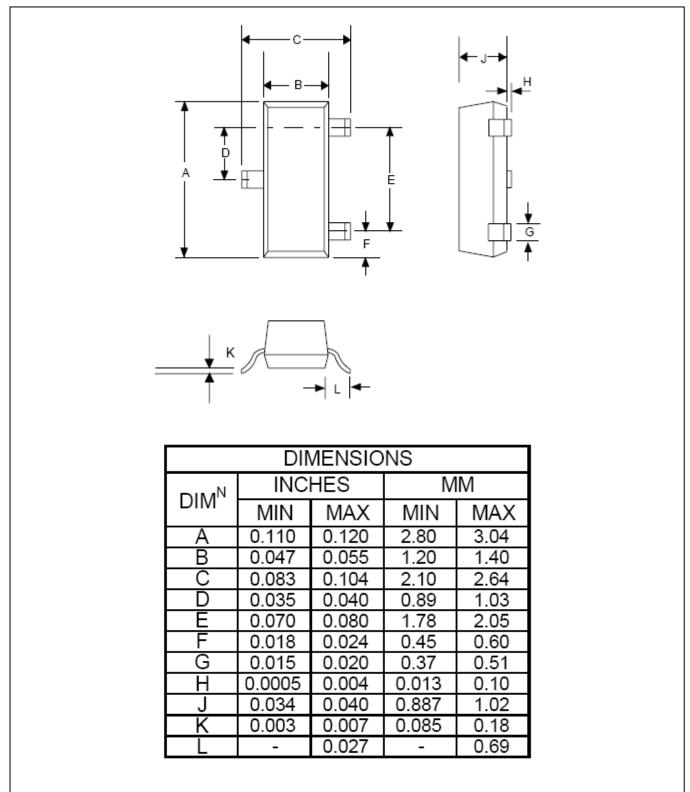
Precision adjustable shunt voltage reference

Stability Boundry Conditions


Test Circuit for $V_{KA}=2V$, 3V

The areas under the curves represent conditions that may cause the device to oscillate. For $V_{KA}=2V$ and 3V curves, R2 and V_{BAT} were adjusted to establish the initial V_{KA} and 1K conditions with $C_L=0$. V_{BAT} and C_L then were adjusted to determine the ranges of stability. As the graph suggested, ACE432 is unconditional stable with IK from 0 to 100mA and with C_L from 0.001uF to 1Uf.

Packing Information


TO-92

Packing Information

SOT-23-3

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/