

Adjustable Precision Shunt Regulator

Description

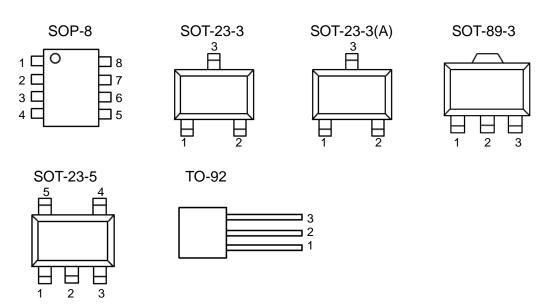
The ACE431S is a low voltage three terminal adjustable shunt regulator with a guaranteed thermal stability over applicable temperature ranges. The output voltage can be set to any value between VREF (approximately 2.5 V) to 18V with two external resistors. This device has a typical output impedance of 0.08Ω . Active output circuitry provides a very sharp turn on characteristic, making this device excellent replacement for Zener diodes in many applications.

The ACE431S is characterized for operation from -40 $^{\circ}$ C to 125 $^{\circ}$ C, and five package options (SOT-23-3, SOT-23-5, SOP-8, TO-92 and SOT-89-3) allow the designer the opportunity to select the proper package for their applications.

Features

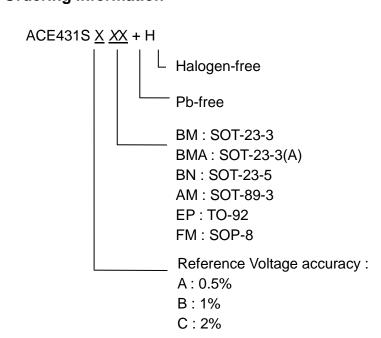
- Low voltage operation (2.5V)
- Adjustable output voltage V₀=V_{REF} to 18V
- Wide operating current range 150µA to 80mA
- Low dynamic output impedance 0.08Ω (Typ)
- Trimmed bandgap design up to +0.5%
- ESD rating is 6KV (Per MIL-STD-883D)
- ROHS Compliant and 100% Lead (Pb)-Free

Application

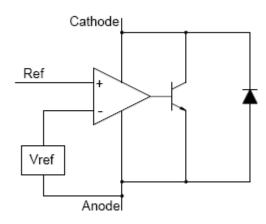

- Linear Regulators
- Adjustable Supplies
- Switching Power Supplies
- Battery Operated Computers
- Instrumentation
- Computer Disk Drives

Absolute Maximum Ratings

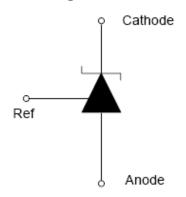
Parameter	Symbol	Max		Unit
Cathode Voltage	V_{KA}	18		V
Continuous Cathode Current	I _{KA}	90	90	
Reference Current	Reference Current I _{REF} 1			mA
Operating Junction Temperature Range	TJ	150		°C
Storage Temperature Range	T _{STG}	-65 to 150		°C
		SOT-89-3	120	
		SOT-23-3	230	
Thermal Resistance	θ_{JA}	SOT-23-5	230	°C/W
		SOP-8	150	
		TO-92	220	



Packaging Type


Description	SOP-8	SOT-23-3	SOT-23-3(A)	SOT-89-3	SOT-23-5	TO-92
Cathode	1	2	1	3	3	3
Anode	2.3.6.7	3	3	2	5	2
NC	4.5				1.2	
Ref	8	1	2	1	4	1

Ordering information

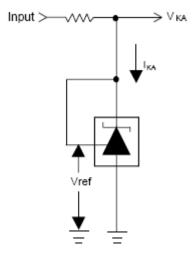


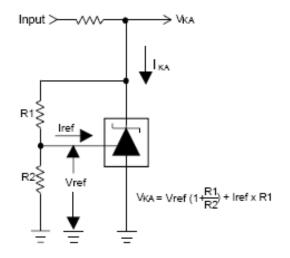
Block Diagram

Symbol Diagram

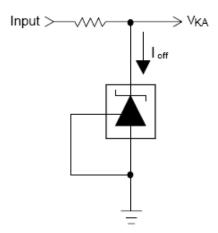
Electrical Characteristics

T_A=25°C unless otherwise specified.

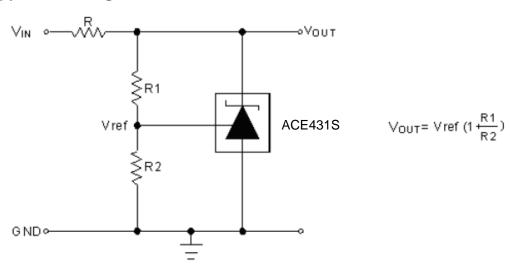

Parameter		Test Circuit	Symbol	Conditions	Min	Тур	Max	Units
	0.5%			2483	2495	2507		
Reference Voltage	1%	1	V_{REF}	$V_{KA} = V_{REF},$ $I_{KA} = 10mA$	2470	2495	2520	mV
	2%			IKA-TOTTIA	2445	2495	2545	
voltage over f	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-14		mV	
Ration of chang reference voltage change in cathode	to the	2	$ \Delta V_{REF}/\Delta V_{KA} $	I_{KA} =3 mA, ΔV_{KA} =10V- V_{REF}		0.2	2.7	mV/V
Minimum cathode current for Regulation		1	I _{MIN}	$V_{KA} = V_{REF}$		0.15	0.3	mA
I Dynamic Impedance I 1 I Z _{IZA} I		$V_{KA}=V_{REF}$, $I_{KA}=1$ to 80mA, $f \le 1.0$ KHz		0.08	0.7	Ω		
Reference Current		2	I _{REF}	I _{KA} =10mA,		0.3	4	μΑ


Adjustable Precision Shunt Regulator

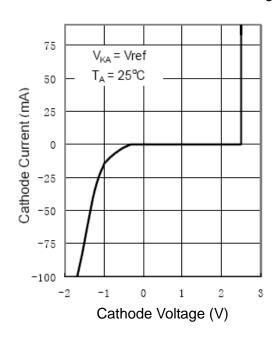
			R1=10KΩ, R2=∞			
Deviation of Reference current over Full Temperature Range	2	I _{I(dev)}	I_{KA} =10mA, R1=10KΩ, R2=∞, T_A =0 to 125°C	-0.13		μΑ
Off-State cathode current	3	I _{OFF}	V _{KA} =18V, V _{REF} =0	0.4	1.0	μΑ

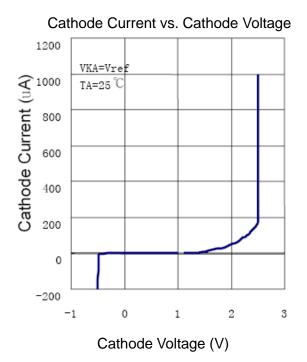

Typical Circuit

Test Circuit 1: V_{KA}=V_{REF}


Test Circuit 2: V_{KA}>V_{REF}

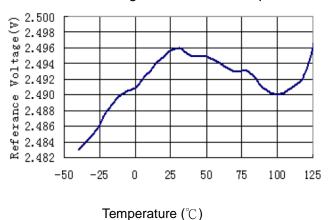
Test Circuit 3: Off State Current

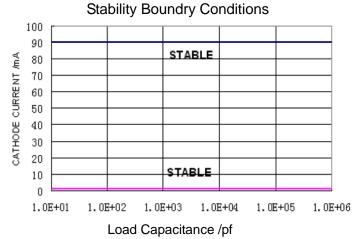



Application Diagram

Typical Performance Characteristics

Cathode Current vs. Cathode Voltage



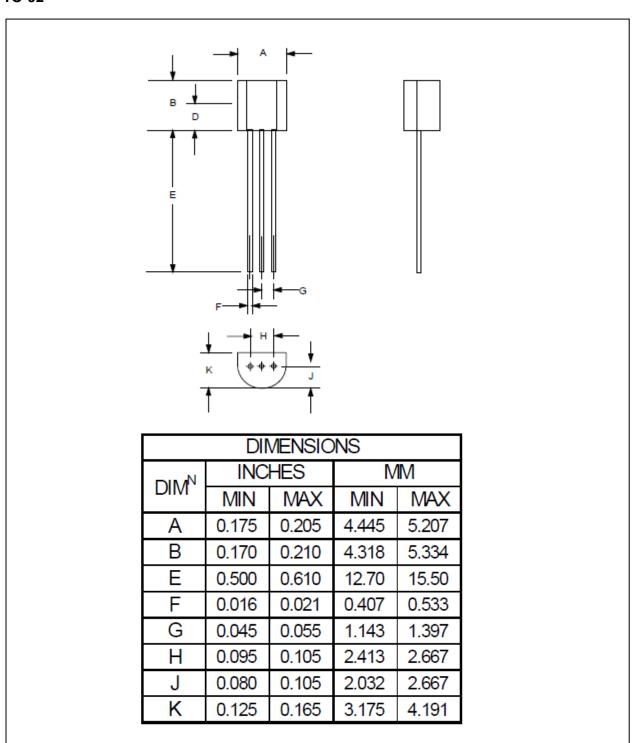


5

Reference Voltage vs. Junction Temperature

Thermal Consideration

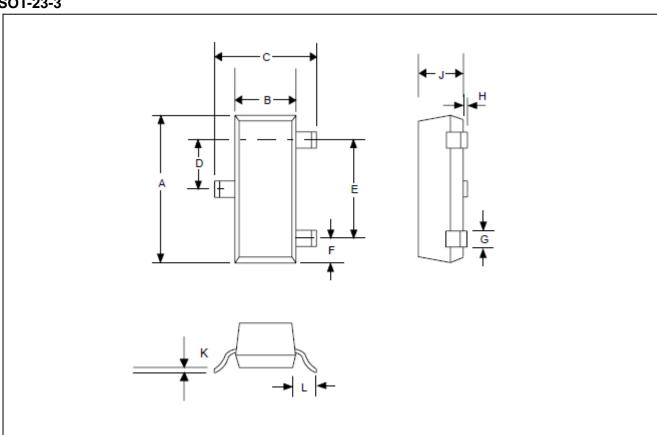
Package	Power Rating (T _A =25°C)	Power Rating (T _A =50°C)	Power Rating (T _A =70°C)
SOT-23-3 (θ _{JA} =230°C/W)	435mW	326mW	239mW
SOT-23-5 (θ _{JA} =230°C/W)	435mW	326mW	239mW
TO-92 (θ _{JA} =220°ℂ/W)	455mW	341mW	250mW


- Maximum junction temperature is 125[°]C
- 2. θ_{JA} is measured with packages mounted onboard under still-air condition with 1W power applied.
- 3. Power rating is calculated using $P_D=(T_J-T_A)/\theta_{JA}$, where T_J denotes junction temperature and T_A denotes ambient temperature.

6

Packing Information

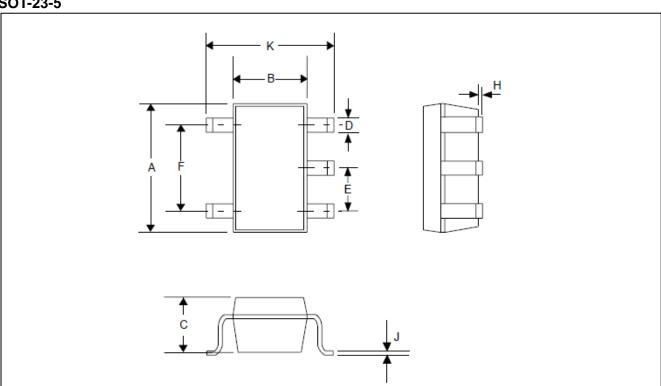
TO-92



Adjustable Precision Shunt Regulator

Packing Information

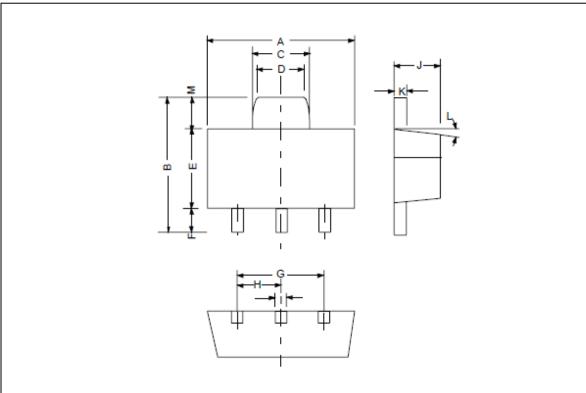
SOT-23-3


DIMENSIONS						
DIM ^N	INC	HES	MM			
DIIVI	MIN	MAX	MIN	MAX		
Α	0.110	0.120	2.80	3.04		
В	0.047	0.055	1.20	1.40		
С	0.083	0.104	2.10	2.64		
D	0.035	0.040	0.89	1.03		
Е	0.070	0.080	1.78	2.05		
F	0.018	0.024	0.45	0.60		
G	0.015	0.020	0.37	0.51		
Н	0.0005	0.004	0.013	0.10		
J	0.034	0.040	0.887	1.02		
K	0.003	0.007	0.085	0.18		
L	-	0.027	-	0.69		

Adjustable Precision Shunt Regulator

Packing Information

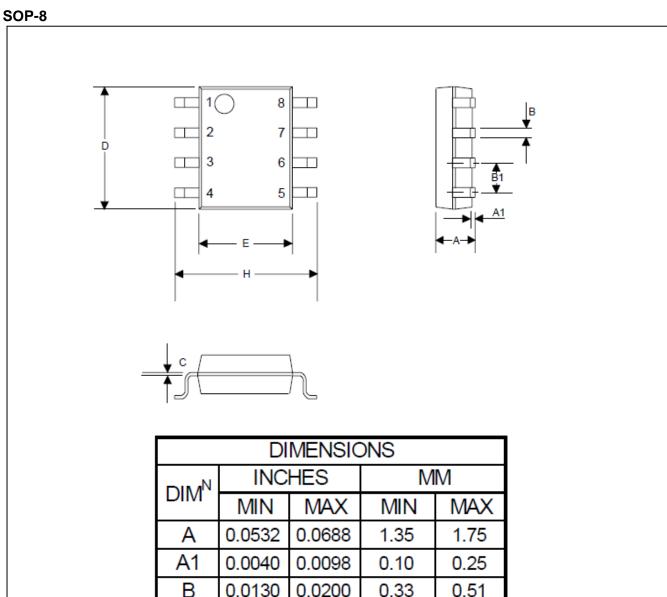
SOT-23-5


DIMENSIONS						
DIM ^N	INC	HES	MM			
ואווט	MIN	MAX	MIN	MAX		
Α	0.110	0.120	2.80	3.05		
В	0.059	0.070	1.50	1.75		
С	0.036	0.051	0.90	1.30		
D	0.014	0.020	0.35	0.50		
Е	-	0.037	-	0.95		
F	-	0.075	-	1.90		
Η	-	0.006	-	0.15		
J	0.0035	0.008	0.090	0.20		
K	0.102	0.118	2.60	3.00		

Adjustable Precision Shunt Regulator

Packing Information

SOT-89-3



DIMENSIONS						
DIM ^N	INC	HES	MM			
ואווט	MIN	MAX	MIN	MAX		
Α	0.173	0.181	4.400	4.600		
В	0.159	0.167	4.050	4.250		
C	0.067	0.075	1.700	1.900		
D	0.051	0.059	1.300	1.500		
Е	0.094	0.102	2.400	2.600		
F	0.035	0.047	0.890	1.200		
G	0.118	BREF	3.00REF			
Ι	0.059	9REF	1.50REF			
	0.016	0.020	0.400	0.520		
J	0.055	0.063	1.400	1.600		
K	0.014	0.016	0.350	0.410		
L	10°TYP		10°TYP			
M	0.028REF		0.70REF			

Adjustable Precision Shunt Regulator

Packing Information

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/