

Ultra Low Power Microprocessor Reset IC

Description

The ACE803N/ACE809N/ACE810N series are micro- processor (μ P) supervisory circuits used to monitor the power supplies in μ P and digital systems. They provide excellent circuit reliability and low cost by eliminating external components.

These circuits perform a single function: they assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, keeping it asserted for at least 140ms after V_{CC} has risen above the reset threshold.

The ACE809N/810N have CMOS outputs, The ACE803N has open drain output. The ACE803N/809N have an active-low RESET output, while the ACE810N has an active-high RESET output. The reset comparator is designed to ignore fast transients on V_{CC} , and the outputs are guaranteed to be in the correct logic state for V_{CC} down to 1.15V over the temperature range.

Features

- Precise Reset Threshold: ±2.5%
- CMOS Output(ACE809N/810N) and Open Drain Output(ACE803N)
- 140ms min Reset Pulse Width
- 3.2µA Supply Current @V_{CC}=3V
- Guaranteed Reset Valid to V_{CC} = +1.15V
- Power Supply Transient Immunity
- Operating Temperature Range: -40°C to +85°C

Application

- Computers
- Portable/Battery-Powered Equipment
- Intelligent Instruments
- Controllers

Absolute Maximum Ratings

Parameter	Symbol	Max	Unit
Terminal Voltage (With respect to GND)	V _{cc}	-0.3~6	V
Input / Output Current	V _{cc} RESET, RESET	20	mA
Thermal resistance	θ _{JA}	300	°C/W
Operating Temperature	T _A	-40~85	°C
ESD Rating (HBM)		4	ΚV
Storage Temperature	Ts	-60 to 150	°C

Note: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Ultra Low Power Microprocessor Reset IC

Packaging Type

SOT-23-3	Description	Function
1	GND	Ground terminal
2	RESET (ACE809N)	CMOS Output. This output remains low if V_{CC} drops below V_{RES} , and for at
		least 140ms after V_{CC} rises above V_{RES} + V_{HYST}
	RESET (ACE810N)	CMOS Output. This output remains high if V_{CC} drops below V_{RES} , and for at
		least 140ms after V_{CC} rises above V_{RES} + V_{HYST}
	RESET (ACE803N)	Open Drain Output. This output remains low if V_{CC} drops below $V_{\text{RES}},$ and for at
		least 140ms after V_{CC} rises above V_{RES} + V_{HYST}
3	Vcc	Analog Input. This pin is both the power supply to internal circuit and the
		voltage to be monitored

Ordering information

Ultra Low Power Microprocessor Reset IC

Device Function Reference Table:

Part No.	Reset threshold	Rest active Low or High	Output Type
ACE809NL	4.62)/	Low	CMOS
ACE810NL	4.03V	High	CMOS
ACE809NM	4 20\/	Low	CMOS
ACE810NM	4.30V	High	CMOS
ACE809NJ	4.00V	Low	CMOS
ACE809NT	2.091/	Low	CMOS
ACE810NT	3.00V	High	CMOS
ACE809NS	2.021/	Low	CMOS
ACE810NS	2.93V	High	CMOS
ACE809NR	2.621/	Low	CMOS
ACE810NR	2.03V	High	CMOS
ACE803NS	2.93V	Low	Open Drain
ACE803NR	2.63V	Low	Open Drain

Block Diagram

Block Diagram For CMOS Output

Ultra Low Power Microprocessor Reset IC

Electrical Characteristics

Vcc=3V, T_A=-40 $^\circ\!{\rm C}$ to 85 $^\circ\!{\rm C}$, Typical values are at T_A=25 $^\circ\!{\rm C}$,unless otherwise noted

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input Voltage	Vcc		1.15		5.5	V
Supply Current	Icc	V _{CC} =2.0V		2.8	5.5	uA
		V _{CC} =3.0V		3.2	6	
		V _{CC} =5.0V		4.0	7.5	
	V	ACE8XXN-4.63	4.51	4.63	4.75	v
		ACE8XXN-4.38	4.25	4.38	4.50	
Reset Threshold		ACE8XXN-4.00	3.89	4.00	4.11	
	V RES	ACE8XXN-3.08	3.00	3.08	3.15	
		ACE8XXN-2.93	2.86	2.93	3.00	
		ACE8XXN-2.63	2.56	2.63	2.70	
Reset Threshold	Vince			0.013\/		V
hysteresis	V HYST			0.013 VRES		v
V _{cc} to RESET		V_{CC} transitions from		20		115
Delay(ACE803N/ACE809N)		V_{RES} +0.1V to V_{RES} -0.1V		20		45
V _{cc} to RESET		V_{CC} transitions from		20		119
Delay(ACE810N)		V_{RES} +0.1V to V_{RES} -0.1V		20		us
RESET Output		V_{RES} > V_{CC} =2V, I_{SINK} =1.5mA				
Voltage Low	V _{OL}	V_{RES} > V_{CC} =3V, I_{SINK} =3.2mA			0.3	V
(ACE803N/ACE809N)		V _{RES} >V _{CC} =4V,I _{SINK} =5mA				
RESET Output		V _{RES} <v<sub>CC=3V,I_{SRC}=1.2mA</v<sub>				
Voltage High	V _{OH}	V _{RES} <v<sub>CC=4V,I_{SRC}=2mA</v<sub>	VCC-0.4			V
(ACE809N)		V _{RES} <v<sub>CC=5V,I_{SRC}=2.5mA</v<sub>				
RESET Output		$V_{RES} < V_{CC} = 3V, I_{SINK} = 3.2 \text{mA}$				
Voltage Low	V _{OL}	V _{RES} <v<sub>CC=4V,I_{SINK}=5mA</v<sub>			0.3	V
(ACE810N)		V _{RES} <v<sub>CC=5V,I_{SINK}=6mA</v<sub>				
RESET Output		V _{RES} >V _{CC} =2V,I _{SRC} =600uA				
Voltage High	V _{OH}	V_{RES} > V_{CC} =3V, I_{SRC} =1.2mA	VCC-0.4			V
(ACE810N)		V _{RES} >V _{CC} =4V, I _{SRC} =2mA				
Reset Pulse Width	T _{RES}		140	240	400	ms

Note : Parts are 100% production tested at 25°C. Specifications over full temperature range are guaranteed by design

Ultra Low Power Microprocessor Reset IC

Detailed Description

A microprocessor's (μ P's) reset input starts the μ P in a known state. The ACE803N/809N/810N series assert reset to prevent code-execution errors during power-up, power-down, or brownout conditions. The device consists of a comparator, a low current high precision voltage reference, voltage divider, output delay circuit and output driver. They assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, keeping it asserted for at least 140ms after V_{CC} has risen above the reset threshold. The ACE809N/810N have a CMOS output stage, the ACE803N has an open drain output stage. The ACE803N/809N have an active-low RESET output, while the ACE810N has an active-high RESET output. The reset comparator is designed to ignore fast transients on V_{CC}, and the outputs are guaranteed to be in the correct logic state for V_{CC} down to 1.15V over the temperature range.

The operation of the device can be best understood by referring to figure 3.

Applications Information

Negative-Going V_{CC} Transients

In addition to issuing a reset to the μ P during power-up, power-down, and brownout conditions, the ACE803N/809N/810N series are relatively immune to short-duration negative-going V_{CC} transients (glitches). As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a V_{CC} transient that goes 100mV below the reset threshold and lasts 10µs or less will not cause a reset pulse. A 0.1µF bypass capacitor mounted as close as possible to the V_{CC} pin provides additional transient immunity.

Ultra Low Power Microprocessor Reset IC

Ensuring a Valid Reset Output Down to $V_{CC} = 0$

When V_{cc} falls below 1.15V, the ACE809N RESET output no longer sinks current—it becomes an open circuit. Therefore, high-impedance CMOS logic inputs connected to RESET can drift to undetermined voltages. This presents no problem in most applications, since most μ P and other circuitry is inoperative with V_{cc} below 1.15V. However, in applications where RESET must be valid down to 0V, a pull-down resistor is needed from RESET pin to GND as shown in Figure 4, then RESET output will be held at low state. The resistor's value is not critical, it should be about 100K Ω , large enough not to load RESET, small enough to pull RESET to ground.

A 100K Ω pull-up resistor to V_{CC} is also recommended for the ACE810N if active high RESET is required to remain valid for V_{CC} < 1.15V.

Fig. 3 RESET Valid to Ground Circuit

Ultra Low Power Microprocessor Reset IC

Packing Information

SOT-23-3

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
A	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
e	0.950 TYP.		0.037 TYP.		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	0 °	8°	0 °	8°	

Ultra Low Power Microprocessor Reset IC

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/