General Description

The ADT7110 is a fixed frequency step-down converter designed to drive Infrared LEDs in the CCD camera module application.

And internal current limit circuit protect external devices.

Package outline of the ADT7110

Applications

- Infrared LED driver for CCD camera
- Input voltage range : 10.5 V to 15 V
- Current mode PWM controller with integrated compensation components
- 350 mA output load current available
- Built-in chip enable/disable function
- Built-in current limit protection
- 500 kHz fixed frequency internal oscillator
- Small outline SOT-26 package ($2.9 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ body)

Typical Application Circuit

* This specifications are subject to be changed without notice

Part List

Component	Description	Type	Value
$\mathrm{U} 1^{* 1}$	Composite type with a PNP transistor and schottky barrier diode	IC	FP 103
L 1	Output filter inductor	Chip inductor	$47 \mathrm{uH} / 590 \mathrm{~mA}$
C 1	Output filter capacitor	Tantalum capacitor	$47 \mathrm{uF} / 16 \mathrm{~V}$
C 2	Bypass capacitor	Tantalum capacitor	$10 \mathrm{uF} / 25 \mathrm{~V}$
R_{SE}	Current sense resistor	Chip resistor	0.1Ω
$\mathrm{R}_{\mathrm{LED} 1} \sim \mathrm{R}_{\mathrm{LED} 5}{ }^{* 2}$	LED current ballast resistor	Chip resistor, 1%	4.0Ω
$\mathrm{R}_{\mathrm{FB1a}} \sim \mathrm{R}_{\mathrm{FBIf}}$	Buck converter feedback loop component	Chip resistor	$120 \mathrm{k} \Omega($ table 3)
$\mathrm{R}_{\mathrm{FB} 2}^{* 3}$	Buck converter feedback loop component	Chip resistor, 1%	$68 \mathrm{k} \Omega($ table 2)

*1 : For cost down, it is possible to use discrete component with a PNP transistor and a schottky barrier diode. In this case, you make use the discrete components with proper electrical specification.
Table A shows the required key electrical limits. It is recommended to use PNP and schottky barrier diode having equivalent specification in the Table A.
*2, *3 : To setting appropriate LED current, Refer to 'Application Hints'.

Table A: Selection guide for the discrete components

Component	Parameter	Ratings	Unit	Remarks
PNP	Collector to Emitter Voltage	-23	V	Recommend
	Collector Current	-2	A	'2SB1706' by ROHM or Equivalent IC
Schottky Barrier Diode	Repetitive Peak Reverse Voltage	30	V	Recommend 'RSX101M-30' by ROHM or Equivalent
	Average Rectified Current	700	mA	

[^0]
Pin Configuration

Pin Description

Pin No.	Name	I/O	Type	Description
1	RS	I	A	Current sense and provide voltage feed-forward.
2	GND	-	G	Ground
3	PWM	O	D	Switching output.
4	FB	I	A	Feedback voltage input
5	EN	I	D	Device enable pin
6	VIN	-	P	Power supply input

I : Input pin O : Output pin IO : Input/Output pin
P: Power pin G: Ground pin
A: Analog pin D: Digital pin

Functional Block Diagram

[^1]
Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage	V_{IN}	-	-	23	V
Power dissipation $\left(\mathrm{Ta}=70^{\circ} \mathrm{C}\right.$) (Note 1$)$	$\mathrm{P}_{\mathrm{Dmax}}$	-	-	265	mW
Storage temperature	$\mathrm{T}_{\mathrm{STG}}$	-65	-	+150	${ }^{\circ} \mathrm{C}$
Junction temperature	$\mathrm{T}_{\mathrm{Jmax}}$	-	-	+150	${ }^{\circ} \mathrm{C}$
Thermal resistance	Θ_{JA}	-	301.2	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note1. derate $301^{\circ} \mathrm{C} / \mathrm{W}$ above $+70^{\circ} \mathrm{C}$.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage ${ }^{* 2}$	$\mathrm{~V}_{\text {IN }}$	10.5	12.0	15.0	V
Operating temperature	$\mathrm{T}_{\text {OPR }}$	-20	-	+85	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{J}	-	-	+125	${ }^{\circ} \mathrm{C}$
Max. power dissipation $\left(\mathrm{Ta}=70^{\circ} \mathrm{C}\right)^{* 1}$	P_{D}	-	-	180	mW

*1 This spec. indicates that junction temperature of the device is under $125^{\circ} \mathrm{C}$. In specific applications, this is recommended under this power dissipation specification.
*2 Minimum $\mathrm{V}_{\text {IN }}$ operating range is dependant to the $\mathrm{V}_{\text {OUT }}$ voltage. (VIN min. $\fallingdotseq \mathrm{V}_{\text {OUT }}+0.5 \mathrm{~V}$) Maximum $\mathrm{V}_{\text {IN }}$ operating range can be extended. In this case, maximum drive current is limited. For using $\mathrm{V}_{\text {IN }}$ over 15 V , refer to the Table B .
Table B : Maximum drive current as maximum $\mathrm{V}_{\text {IN }}$ operating voltage.

$\mathrm{V}_{\mathrm{IN}}(\mathrm{V})$	16	17	18	19	20	21	22
Drive current (mA)	330	310	290	270	250	230	210

Electrical Characteristics $\left(\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathbf{V}_{\mathrm{IN}}=\mathbf{1 2 V}\right.$, unless otherwise noted)

Parameter	Condition	MIN	TYP	MAX	Unit	Note
Supply current, operating	$\mathrm{V}(\mathrm{EN})=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}$	-	6	9	mA	
Supply current, disable	$\mathrm{V}(\mathrm{EN})=0 \mathrm{~V}$	-	90	200	$\mu \mathrm{~A}$	
$\mathrm{~V}(\mathrm{EN})$, input voltage high	-	2.4	-	-	V	
$\mathrm{V}(\mathrm{EN})$, input voltage low	-	-	-	1.2	V	
PWM controller	$\mathrm{VIN} \leq 15 \mathrm{~V}$	-	300	350	mA	
Output drive current	-	550	-	-	mA	
Current limit	$\mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}$	-	85	-	$\%$	
Efficiency	$\mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}$	350	500	625	kHz	
Oscillator frequency	$\mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}$	2.16	2.21	2.26	V	
Feedback voltage $\left(\mathrm{V}_{\mathrm{FB}}\right)$						

Typical Performance Characteristics

LED current vs. Ta

Efficiency vs. Load current

Switching frequency vs. Ta

Application Hints

- LED Current control

The LED current is determined by current ballast resistor ($\mathrm{R}_{\text {LED1 } 1 \sim} \sim \mathrm{R}_{\text {LED6 } 6}$) and feedback resistor ($\mathrm{R}_{\mathrm{FB} 2}$). The current setting procedure is described as below.
i) Choose the $R_{\text {LED } 1} \sim R_{\text {LED6 }}$

The voltage on current ballast resistor ($\mathrm{R}_{\text {LED }}$) is about 200 mV normally. So the LED current is $200 \mathrm{mV} / \mathrm{R}_{\text {LED }}$.
In order to set LED current accurately, the precision resistors are preferred (1% recommended).
The $R_{\text {LED }}$ value as LED current is shown as below table.
< table $1>\mathrm{R}_{\text {LED }}$ vs. LED current

$\mathrm{R}_{\text {LED }}(\Omega)$	LED current (mA)
5.76	35
4.42	45
4.02	50
2.67	75
2.49	80

ii) Choose the $R_{F B 2}$

Secondly you choose appropriate $\mathrm{R}_{\mathrm{FB} 2}$ value for setting $\mathrm{V}_{\mathrm{LED}} . \mathrm{R}_{\mathrm{FB} 2}$ is determined by forward voltage of the 6 series LEDs because the forward voltages of LED are different each other according to the LED manufacturers. (1.2 ~ 1.5 volts for V_{F} setting current flow away). The table and formula of the $\mathrm{R}_{\mathrm{FB} 2}$ are shown as below.
$<$ table $2>\mathrm{R}_{\mathrm{FB} 2}$ vs. VLED

$\mathrm{R}_{\mathrm{FB} 2}(\mathrm{k} \Omega)$	$\mathrm{VLED}(\mathrm{V})$
61.9	8.4
64.9	8.6
66.5	8.8
68.1	9.0
69.8	9.2
71.5	9.4
73.2	9.6
75.0	9.8

$$
R_{F B 2} \approx \frac{V L E D-V_{F B}}{100 u A}
$$

Where the VLED is the sum of the forward voltage in 6 series LEDs at setting current and V_{FB} is the feedback voltage. (typically 2.21 V)
Fig. 1 shows the method of measuring VLED.

iii) Choose the $\mathrm{R}_{\mathrm{FB} 1}\left(=\mathrm{R}_{\mathrm{FB} 1 \mathrm{a}} \sim \mathrm{R}_{\mathrm{FB} 1 \mathrm{f}}\right)$
$\mathrm{R}_{\mathrm{FB} 1}$ is used to biasing of LED. And these resistor value should be changed by the number of the LED branch. Therefore you should choose appropriate $\mathrm{R}_{\mathrm{FB} \text { 1 }}$ value according to the LED branch count. The $\mathrm{R}_{\mathrm{FB} 1}$ selection formula is shown as below.

Typical ar $R_{F B I} \approx 20 \mathrm{k} \Omega \times$ number of LED branches each LED branch has 6 series LEDs. In this circuit, proper $\mathrm{R}_{\text {FB1 }}$ value is $120 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{FBla}} \sim \mathrm{R}_{\mathrm{FBIf}}$ value are used $120 \mathrm{k} \Omega$ equally. The $\mathrm{R}_{\mathrm{FB} 1}$ value by the number of LED branch is shown below. < table $3>\mathrm{R}_{\mathrm{FB} 1}$ by the LED branches

Number of LED branch	$\mathrm{R}_{\mathrm{FB} 1}(\mathrm{k} \Omega)$
6	120
5	100
4	80
3	60
2	40
1	20

LED current check

The accurate method of measuring LED current is to measure the voltage on current ballast resistor ($\mathrm{R}_{\mathrm{LED}}$). And then the LED current is simply obtained by dividing this voltage by $\mathrm{R}_{\mathrm{LED}}$.
To measure voltage on $\mathrm{R}_{\text {LED }}$ accurately, (-) probe of the voltage meter is connected to (-) terminal of the ballast resistor and measure the voltage of $(+)$ terminal on ballast resistor.
Fig. 2 shows the method of measuring voltage on ballast resistor.

$<$ Fig. 2 LED current test>

It is possible to calculate the LED current by measuring of ICC current. As the ADT7110 is basically buck converter, its ICC current is the function of VIN, VOUT, LED branch current and quiescent current. Therefore it is not easy to calculate accurate LED current by measurement of ICC current.
The relation LED branch current to the ICC current is shown $\mathrm{b}^{{ }^{-1}}{ }_{\text {LED.Ibranch }} \approx I C C \times$ efficiency $\times \frac{V_{I N}}{V_{\text {OUT }}} \times \frac{1}{N}$, where
N : the number of LED branch
efficiency : efficiency of the ADT7110 at applied condition
$<$ Fig. 1 VLED test>

* This specifications are subject to be changed without notice

Application Hints (continued)

Example : typical application circuit
$\mathrm{N}=6$ (6 LED branches)
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=9 \mathrm{~V}$
$\mathrm{ICC}=280 \mathrm{~mA}$ (measured), and efficiency is 80%.
So, calculated 1 branch LED current is 49.77 mA .

- Dimming control

The LED brightness control can be obtained by forcing a pulse wave to the EN input terminal. Typically, a 100 Hz to 1 kHz pulse signal is used. LED brightness is proportional to the duty of pulse wave. And in this case, LED branch current is RMS value of the PWM modulated current.

When the pulse-width is below 50% duty, the driving current of ADT7110 can be increased up to current limit condition. ($\sim 550 \mathrm{~mA}$) But you keep carefully to select the inductor (L1) over 700 mA rated current.
Note that the inductor (L1) is 590 mA rated in typical application circuit.

Package ; SOT-26, 2.9mm x 1.6mm body (units : mm)

* This specifications are subject to be changed without notice

[^0]: * This specifications are subject to be changed without notice

[^1]: * This specifications are subject to be changed without notice

