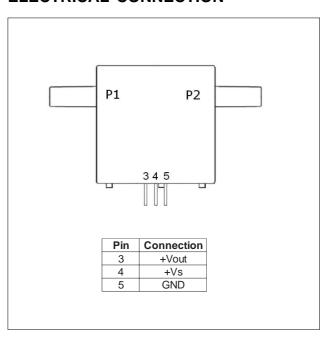

FEATURES

- Flow ranges 0...200 sccm, 0...±200 sccm, 0...1 slpm, 0...±1 slpm
- Thermal mass flow sensing
- · 1...5 V linear output
- · RoHS and REACH compliant
- Quality Management System according to ISO 13485:2003 and ISO 9001:2008

To be used with dry gases only.

The WBA series is NOT designed for liquid flow and will be damaged by liquid flow through the sensor.


SPECIFICATIONS

Maximum ratings

Supply voltage $8 \dots 15 \text{ V}$ Temperature limits

Compensated $-25 \dots 85 \,^{\circ}\text{C}$ Operating $-25 \dots 85 \,^{\circ}\text{C}$ Storage $-40 \dots 125 \,^{\circ}\text{C}$ Humidity limits (non-condensing) $0 \dots 95 \,^{\circ}\text{RH}$ Vibration¹ $20 \,^{\circ}\text{g}$ Mechanical shock² $30 \,^{\circ}\text{g}$

ELECTRICAL CONNECTION

E / 11350 / G 1/4

FLOW SENSOR CHARACTERISTICS⁶

 $(V_S = 10 \pm 0.01 \text{ V}, T_A = 20 \text{ °C}, P_{Abs} = 101.325 \text{ kPa})$

Part no.	Flow range	Max. flow change	Pressure drop	Max. Common mode pressure	
WBAM200DU	0200 sccm				
WBAM200DB	0±200 sccm	F O alpm/aga	0.1 mbar @ 200 sccm	25 noi	
WBAL001DU	01 slpm	01 slpm 5.0 slpm/sec		25 psi	
WBAL001DB	0±1 slpm				

Note:

sccm denotes standard cubic centimeters per minute.

slpm denotes standard liter per minute.

PERFORMANCE CHARACTERISTICS

 $(V_s = 10 \pm 0.01 \text{ V}, T_A = 20 \text{ °C}, P_{Abs} = 101.325 \text{ kPa}, \text{ output signal is ratiometric to } V_s, \text{ media} = \text{air})$

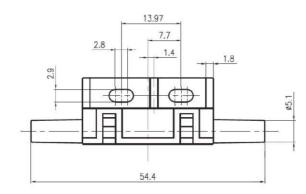
Charac	teristic	S	Min.	Тур.	Max.	Unit
Accuracy ³					±(2.0 % of reading + 0.25 %FSO)	
Temperature effects	Offset			±0.625		%FSS
(-2585 °C)⁵	Span	WBAM200			±4	
		WBAL001			±5	% of reading
Repeatability (incl. hys				0.25		
Offset long term stabil	ar)		±0.05		%FSS	
Noise level				0.1	70F33	
Current consumption			10	12	mA	
Response time (t ₉₀)				5	mo	
Warm-up time ⁷				70	ms	

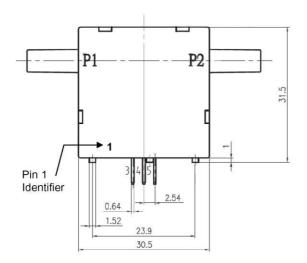
Unidirectional devices

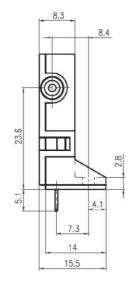
Characteristics	Min.	Тур.	Max.	Unit
Zero offset	0.99	1.00	1.01	
Full scale span ⁴	3.91	4.00	4.09	V
Full scale output		5.00		

Bidirectional devices

Cha	aracteristics	Min.	Тур.	Max.	Unit	
Zero offset		2.99	3.00	3.01		
Full scale span⁴		3.91	4.00	4.09	\/	
Output	at max. specified flow		5.00		V	
	at min. specified flow		1.00			


Note:


The sensor's performance is determined by intake flow conditions which depend on mounting and environmental effects. To ensure laminar flow through the sensor, it should be considered to insert a straight tube with a length 10 times the inner diameter of the pneumatic connector or a laminar flow element upstream of the sensor. Additionally, the WBA has to be mounted with both ports horizontally and pins downwards.


E / 11350 / G 2/4

OUTLINE DRAWING

Note: Positive flow direction is defined as proceeding from P1 to P2 and results in positive output.

third angle projection

dimensions in mm

E / 11350 / G

3/4

GAS CORRECTION FACTORS⁸

Gas type	Gas correction factor
Air	1.0
Oxygen (O ₂)	1.0
Nitrogen (N ₂)	1.0
Argon (Ar)	1.18
Hydrogen (H ₂)	*
Carbon dioxide (CO ₂)	0.67

^{*} For Hydrogen applications, the actual H₂ calibration is performed whenever possible.

Specification notes:

- 1. Sweep 20 to 2000 Hz, 8 min, 4 cycles per axis, MIL-STD-883E, Method 2007.2.
- 2. 5 shocks, 3 axes, MIL-STD-883E, Method 2002.3.
- 3. Accuracy is the combined error from offset and span calibration, linearity, hysteresis and repeatability.
- 4. Full Scale Span (FSS) is the algebraic difference between the output signal for the highest and lowest specified flow.
- 5. Shift is relative to 25°C.
- 6. A 5 µm filter is recommended to protect the sensing element from dust particles which may be present in some applications.
- 7. Warm-up time is the time from power on to the first stable reading.
- 8. To obtain the real flow rates in a specific gas, multiply the readings from the sensor by the gas correction factor in the table. The factors are approximate and should be used as guidelines only. Sensor performance strongly depends on gas dynamics and has to be evaluated in the respective application.

ORDERING INFORMATION

	Series	Flov	w range	Gas		Flow direction		Grade		Calibration	
Options	WBA	M200	200 sccm	D*	Dry air	В	Bidirectional	Н	High	0	10 V
		L001	1 slpm			U	Unidirectional				(V _s =815 V)
* other calibration gases on request											
Example:	WBA	M200		D		U		Н		0	

First Sensor reserves the right to make changes to any products herein. First Sensor does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

E / 11350 / G 4/4

