

ISSUED DATE: <u>2013-11-08</u>

Ver 2.2 **VERSION**

> □ Preliminary Specification **■Final Product Specification**

Approved by	Notes
	, v

SHANGHAI TIANMA Confirmed:

Prepared by	Checked by	Approved by
邓隆年	海姆科	5(3m.)

This technical specification is subjected to change without notice

TM035HBHT6 V2.2

Table of Contents

		1
Red	cord of Revision	3
1.	General Specifications	
2.	Input/Output Terminals	5
3	Absolute Maximum Ratings	
4	Electrical Characteristics	
	4.1 Driving TFT LCD Panel	7
	4.2 Driving Backlight	7
	4.3 Block Diagram	8
5. E	Data input timing	9
	5.1 Signal AC Timing	9
	5.2 Recommend RGB Interface Timing	. 10
	5.3 Reset Timing	13
	5.4 Power ON/OFF Sequence	. 14
6.	Touch Screen Panel Specifications	15
7.	Optical Characteristics	. 18
8.	Environmental / Reliability Test	21
9.	Mechanical Drawing	. 22
10.	Packing Drawing	.23
11.	Precaution for Use of LCD Modules	. 25

TM035HBHT6 V2.2

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2011-08-02	Preliminary release.	Longping.Deng
2.0	2011-12-27	Final Specification release.	Longping.Deng
2.1	2012-05-16	Update porch data.	Pingping Wang
2.2	2013-11-08	Add the IC type on page 4.	Fen He

TM035HBHT6 V2.2

1. General Specifications

·	Feature	Spec	
	Size	3.5 inch	
	Resolution	240(RGB) x 320	
	Technology Type	a-Si	
	Pixel Pitch (mm)	0.2235x0.2235	
	Pixel Configuration	R.G.B. Vertical Stripe	
Display Spec.	Display Mode	Transflective	
	Surface Treatment(Up Polarizer)	HC	
	Viewing Direction	6 o'clock	
	Gray Scale Inversion Direction	12 o'clock	
	LCM (W x H x D) (mm)	64.0x85.0x4.13	
	Active Area(mm)	53.64x71.52	
Mechanical	With /Without TSP	With TSP	
Characteristics	Weight (g)	44.375	
	LED Numbers	6 LEDs	
	Interface	RGB 6 bit+SPI	
Electrical Characteristics	Color Depth	262K	
	Driver IC	ILI9341	

Note 1: Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift.

Note 2: Requirements on Environmental Protection: Q/S0002

Note 3: LCM weight tolerance: ± 5%

2. Input/Output Terminals

2.1 J1 Pin Assignment

Connector type: FH12A-50S-0.5SH

No	Symbol	I/O	Connector type: FH12A-50S-0.8 Description Comment					
	VL1	P		Comment				
1	GND	P	Power supply for LED(High voltage)					
3		P	Ground					
4	VL2 GND	P	Power supply for LED(Low voltage) Ground					
5	VSHD	P	Power supply for digital					
6	GND	P	Ground					
7	GND	P	Ground					
8	GND	P	Ground					
9	VSYNC	<u>'</u>	Vertical sync. in RGB mode					
10	GND	P	Ground					
11	RESET	i	Reset(Low active)	·				
12	GND	P	Ground					
13	GND	P	Ground					
14	GND	Р	Ground					
15	CS	I	Chip select input(Low enable)					
16	GND	Р	Ground					
17	SDO	0	Serial data output					
18	SDI	I	Serial data input					
19	GND	Р	Ground					
20	SCL	I	Serial interface clock					
21	GND	Р	Ground					
22	B5	I	Blue data input(MSB)					
23	B4	I	Blue data input					
24	B3	I	Blue data input					
25	B2	I	Blue data input					
26	B1		Blue data input					
27	B0		Blue data input(LSB)					
28	ENAB		Data enable in RGB mode					
29	GND	Р	Ground					
30	HSYNC		Horizontal sync. in RGB mode					
31	GND	P	Ground					
32	DCLK	l D	Pixel clock signal in RGB mode					
33	GND	Р	Ground					
34 35	G5 G4	l	Green data input(MSB) Green data input					
36	G3	l I	Green data input					
37	G2	l I	Green data input					
38	G1	l I	Green data input					
39	G0	i	Green data input Green data input(LSB)					
40	GND	P	Ground					
41	R5	<u>'</u>	Red data input(MSB)					
42	R4	i	Red data input					
43	R3	i	Red data input					
44	R2	i	Red data input					

TM035HBHT6 V2.2

45	R1	I	Red data input	
46	R0	I	Red data input(LSB)	
47	GND	Р	Ground	
48	GND	Р	Ground	
49	GND	Р	Ground	
50	GND	Р	Ground	_

Note1: I/O definition:

I----Input O----Output P----Power/Ground

2.2 Touch panel Pin Assignment

Pin	Symbol	I/O	Description	Remark
1	YU	0	Y+ Channel input	
2	XR	0	X+ Channel input	
3	YD	0	Y- Channel input	
4	XL	0	X- Channel input	

TM035HBHT6 V2.2

3 Absolute Maximum Ratings

3.1 Driving TFT LCD Panel

GND=0V,Ta=25°C

Item	Symbol	Min	Max	Unit	Remark
Supply Voltage	VSHD	-0.3	4.6	V	
Driver supply voltage	VGH-VGL	-0.3	+32.0	V	
Logic input voltage range	VIN	-0.3	VSHD + 0.3	V	
Logic output voltage range	VO	-0.3	VSHD + 0.3	V	
Operating temperature	Тор	-20.0	60.0	$^{\circ}$	Note1
Storage temperature	Tst	-30.0	70.0	Ç	Note1

Note1: The parameter is for driver IC (gate driver, source driver) only.

Note2: Signals include R0~R5, G0~G5, B0~B5, DCLK, Hsync, Vsync,Reset,CS,SDI,SCL,.ENABLE **Table 3.1 absolute maximum rating**

4 Electrical Characteristics

4.1 Driving TFT LCD Panel

GND=0V, Ta=25°C

Item		Symbol	Min	Тур	Max	Unit	Remark
Supply Voltage		VCC	2.5	2.8	3.2	V	
Gate on volta	age	VGH	13.5	15.0	16.5	V	
Gate off volta	age	VGL	-11.0	-10.0	-9.0	V	
Input Signal	Low Level	V _{IL}	0	-	0.3xVCC		R0~R5;G0~G5;B0~B5 DOTCLK; Hsync; Vsync
Voltage	High Level	V_{IH}	0.7xVCC	1	VCC	V	ENABLE;R/L;U/D
Current of VSHD Power supply		Icc	-	15	-	mA	Note 1

Note1: For different LCM, the value may have a bit of difference. Note2: To test the current dissipation, use "all Black Pattern".

Table 4.1 LCD module electrical characteristics

4.2 Driving Backlight

Item	Symbol	Min	Тур	Max	Unit	Remark
Forward Current	I _F	-	20	-	mA	
Forward Voltage	V_{BL}	-	19.2	-	V	
Backlight Power Consumption	W_{BL}	1-	384	-	mW	
Life Time	-	10,000	20,000	-	Hrs	Note 3

Note 1: I_F is defined for one channel LED. There are total three LED channels in back light unit

Note 2: Optical performance should be evaluated at Ta=25 °C only.

Note 3: If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

Table 4.2 LED backlight characteristics

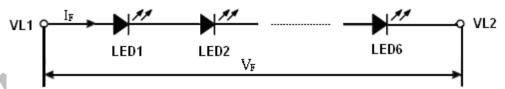
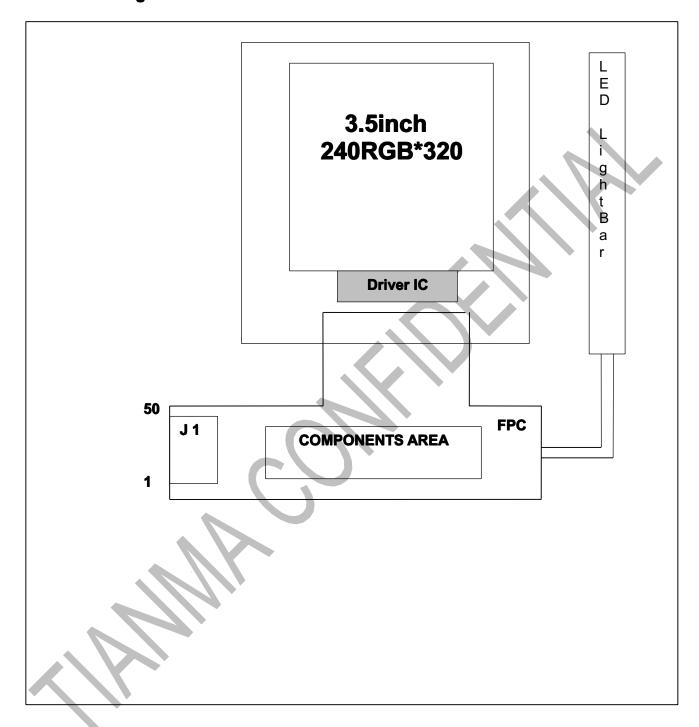



Figure 4.2 LED connection of backlight

4.3 Block Diagram

5. Data input timing

5.1 Signal AC Timing

(VSHD=2.5~3.2V,Ta=25°C)

Parameter	Description	Min	Max	Unit	Remark
tSYNCS	VSYNC/HSYNC setup time	15		ns	
tSYNCH	VSYNC/HSYNC hold time	15		ns	
tENS	ENAB setup time	15		ns	
tENH	ENAB hold time	15		ns	
tPOS	Data setup time	15		ns	
tPDH	Data hold time	15		ns	
PWDH	DCLK high-level period	15		ns	
PWDL	DCLK low-level period	15		ns	
tCYCD	DCLK cycle time	100		ns	¥
trgbr, trgbf	DCLK,HSYNC,VSYNC rise/fall		15	ns	

time

Table 5.1 RGB Interface Characteristics

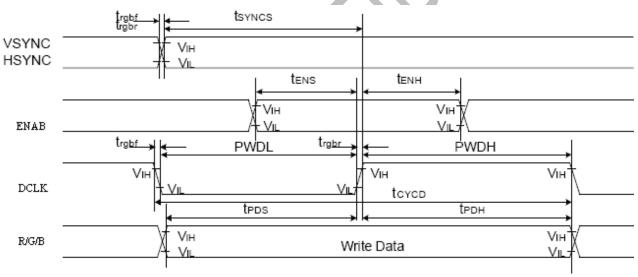


Fig.5-1 RGB Interface Timing

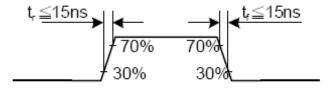


Fig.5-2 Input signal's rise and fall times

\bigvee

5.2 Recommend RGB Interface Timing

(VSHD=2.5~3.2V,Ta=25°C)

Parameter	Symbol	Symbol	Min	Тур	Max	Unit	Remark
DCLK	DCLK frequency	fDCYC	-	5.64	10	MHz	
DCLK	DCLK period	tDCYC	100	177.15	-	ns	
	Horizontal	Thd		240			
HSYNC	1horizontalline	Th	-	280	-	DCLK	
TISTING	Horizontal blank	Thb	4	30	-	DOLK	
	Horizontal front porch	Thfp	2	10	16		
	Vertical display area	Tvd		320			
VSYNC	Vsync period time	Tv	ı	328	-	Lino	
VSTING	Vsync blank	Tvb	2	4	-	Line	
	Vsync Front porch	Tvfp	2	4			

Tab.5-2 Recommend Input Timing (DCLK, HSYNC, VSYNC, ENAB)

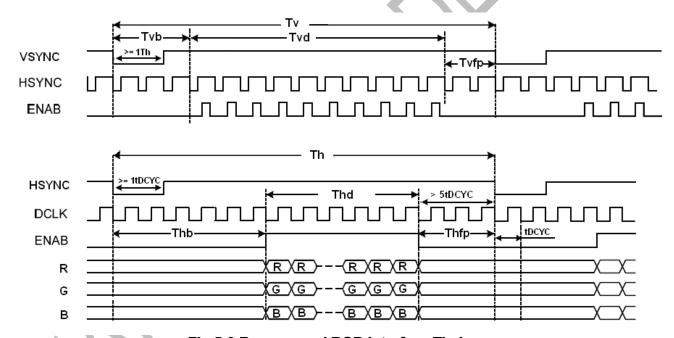


Fig.5-3 Recommend RGB Interface Timing

5.2 3-Wire 9-BIT Serial Interface

5.2.1 3-Wire 9-Bit data serial interface write mode

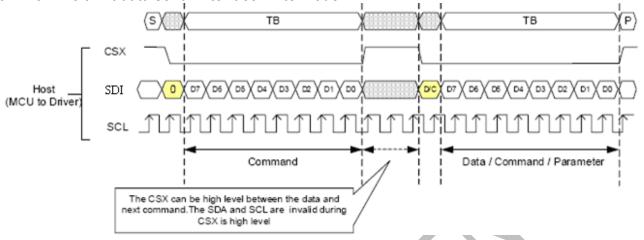


Figure. 5-4 3-Wire 9-Bit Serial Interface I Bus Protocol, Write to Register or Display RAM Note: D/C =0, Transfer Command; D/C =1, Transfer Data.

5.2.2 3-Wire 9-Bit data serial interface read 1-byte mode

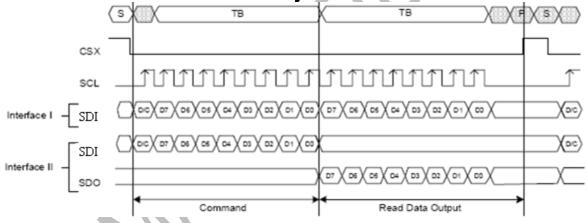


Figure. 5-5 3-Wire 9-Bit Serial Interface I/II Bus Protocol, Read 1-Byte From Register Note: D/C=0, Transfer Command; D/C=1, Transfer Data.

5.2.3 3-Wire 9-Bit data serial interface read 3-byte mode

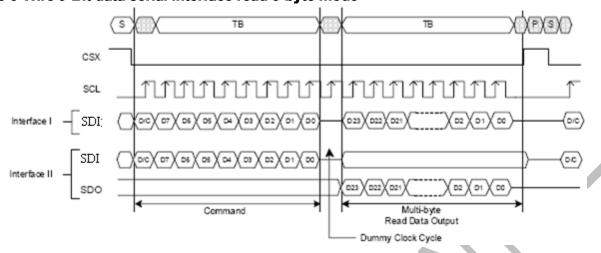


Figure. 5-6 3-Wire 9-Bit Serial Interface I/II Bus Protocol, Read 3-Byte From Register

Note: D/C=0, Transfer Command; D/C=1, Transfer Data.

5.2.4 3-Wire 9-Bit serial interface Timing

(VSHD=2.5~3.2V,Ta=25°C)

				(VOITE 2.0 0.2 V, Ta 20 C)		
Parameter	Symbol	Conditions	Min	Max	Unit	Remark
Serial Clock Cycle(Write)	tscycw	SCL	100	•	ns	
SCL "H" pluse width(Write)	tshw	SCL	40	•	ns	
SCL "L" pluse width(Write)	tslw	SCL	40	-	ns	
Data setup time(Write)	tsds	SDI	30	-	ns	
Data hold time(Write)	tsdh	SDI	30	-	ns	
Serial Clock Cycle(Read)	tscycr	SCL	150	-	ns	
SCL "H" pluse width(Read)	tshr	SCL	60	-	ns	
SCL "L" pluse width(Read)	tslr	SCL	60	-	ns	
Access time	tacc	SDO(Read)	10		ns	
Output disable time	toh	SDO(Read)	10	50	ns	
CS "H" pluse width	tchw	CS	40	-	ns	
CS-SCL time	tcss	CS (Write)	60	-	ns	
CO-SCL UITIE	tcsh	CS (Write)	65	-	ns	

Tab.5-3 AC Characteristics of 3-Wire 9-Bit Serial Interface

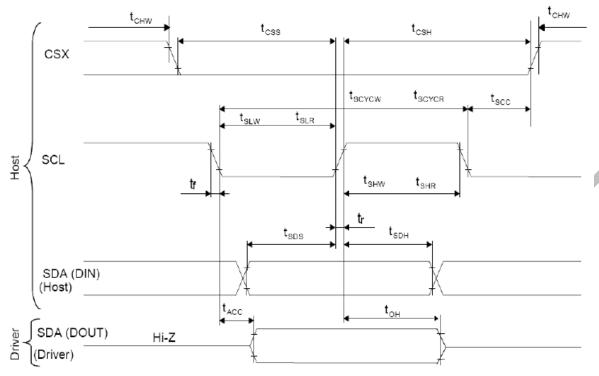


Fig.5-7 AC Characteristics of 3-Wire 9-Bit Serial Interface timing

5.3 Reset Timing

Parameter	Symbol	MIN	TYP	MAX	Unit	Remark
	tRW	10	-	-	us	-
RESET	tRT	-	-	5	ms	note 1
	IK!	-	-	120	ms	note 2

Tab.5-4 Reset input timing

Note1: When Reset applied during Sleep In Mode. Note2: When Reset applied during Sleep Out Mode.

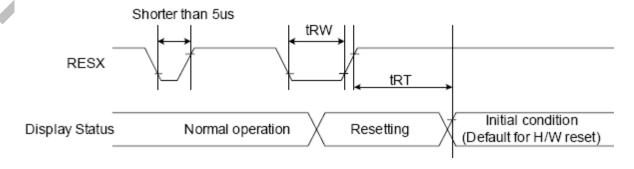


Fig.5-8 Reset timing

5.4 Power ON/OFF Sequence

Item	Symbol	Min	Тур	Max	Unit	Remark
VSHD to RESET2 ending/ RESET2 starting to VSHD	t1	10			ms	
RESET2 ending to SPI starting/ SPI ending to RESET2 starting	t2	10	-	50	ms	
SPI starting to RGB starting/ RGB ending to SPI ending	t3	20	-	50	ms	
RGB starting to BLU starting/ BLU ending to RGB ending	t4	50	-	-	ms	
RGB ending to RESET1 starting	t5	20	-	-	ms	

Table 5.5 Power on/off sequence

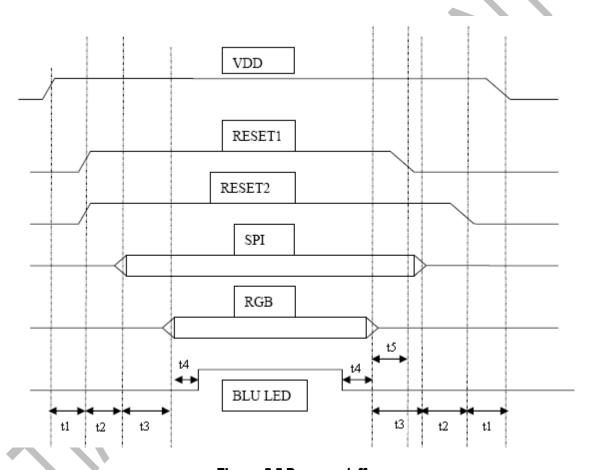
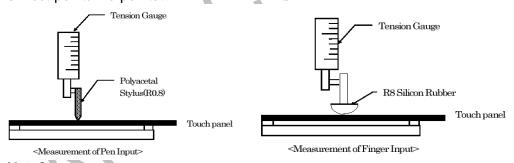


Figure 5.5 Power on/off sequence

Note1:RESET1Power down in sleep out mode. Note2:RESET2 Power down in sleep in mode.

6. Optical Characteristics

6.1 Electrical Characteristics


Item		Min.	Тур.	Max.	Unit	
Linearity	Linearity			1.5%		Each axis: X and Y
Operating Volt	Operating Voltage		5.0	7.0	V	DC
Resistance	X axis:	200		600	Ω	
Resistance	Y axis:	160		900	Ω	
Chattering Time				10.0	ms	
Insulation Resis	Insulation Resistance				МΩ	@DC25V

6.2 Touch Panel Mechanical & Reliability Characteristics

Item	Value		Unit	Remark	
	Min	Тур	Max		
Activation			60	gf	Note 1
Durability-surface scratching	Write 100000	-		characters	Note 2
Durability-surface pitting	1000000	-		touches	Note 3
Surface hardness	3			Н	JIS K5400

Note1:

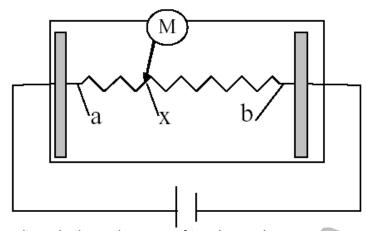
- 1. Input DC 5V on X direction, Drop off Polyacetal Stylus(R0.8),until output voltage stabilize, then get the activation force;
- 2. R8 Silicon rubber for finger Activation force test;
- 3. Test point: 9 points.

Note2:

End shape: R0.8mm(Stylus)

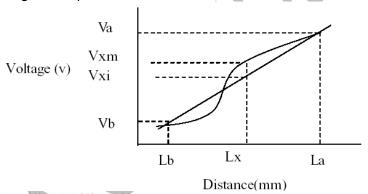
Load force: 150gf

Writing speed: 60 mm/sec Material of Pen: Polyacetal resin Sliding length: 10~100 mm

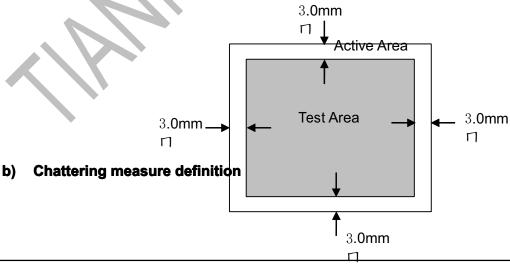

Note3:

End shape: R0.8mm, Material of Pen: Silicon rubber

Hardness: 60° Load force: 150gf Frequency: 2 Hz


6.3 Electrical Characteristic

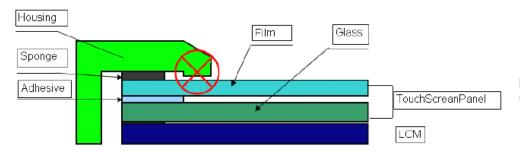
a) Linearity Definition

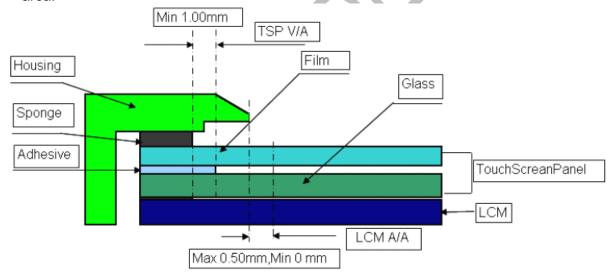

Va: maximum voltage in the active area of touch panel Vb: minimum voltage in the active area of touch panel

X: random measuring point
Vxm: actual voltage of Lx point
Vxi: theoretical voltage of Lx point

Linearity = [|Vxi-Vxm |/(Va-Vb)]*100%

Note: Test area is as follows and operation force is 150gf(single layer ITO Film), polyacetal stylus: R0.8mm.




6.4.Housing design guide

Housing design follow as below

- 1. Avoid the design that housing overlap and press on the active area of the LCM
- 2. Give enough gap(Over 0.5mm at compressed) between the housing and TSP to Protect wrong operating.

- 3. Use a buffer material(Gasket) between the TSP and housing to protect damage and wrong operating
- 4. Avoid the design that buffer material overlap and press on the inside of TSP view area.

7. Optical Characteristics

7.1 Driving the backlight condition

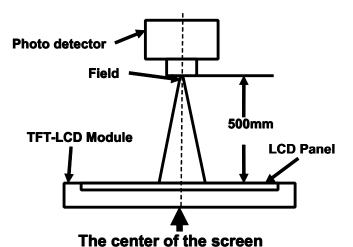
Ta=25°C

Item	1	Symbol	Condition	Min	Тур	Max	Unit	Remark	
		θТ		50	55	-			
Viou Anglos		θВ	CR≧10	35	40	1	Degree	Note 2	
view Angles	View Angles		CR = 10	35	40	-	Degree	Note 2	
				40	45				
Contrast Ratio)	CR	θ=0°	100	150			Note1、Note3	
Response Tim	ne	Ton	25℃		35		ms	Note1 Note4	
	<u> </u>	T _{OFF}		0.054	0.004	0.054		NOIE4	
	White	X		0.251	0.301		0.351		
	VVIIICO	У		0.271	0.321	0.371			
	Red	Rx		0.530	0.580	0.630			
Charamaticity	Reu	Ry	Backlight is	0.270	0.320	0.370		Note5	
Chromaticity	Craan	Gx	on	0.280	0.330	0.380		Note1	
	Green	Gy		0.450	0.500	0.550			
	Dluc	Bx		0.110	0.160	0.210			
	Blue	Ву		0.100	0.150	0.200			
Luminance		L		60	80		cd/m ²	Note1、Note7	

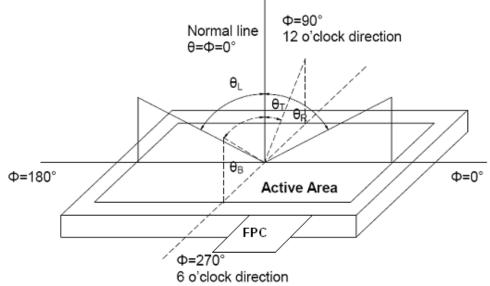
7.2 Not driving the backlight condition

Ta=25℃

Item	Symbol	Condition	Min	Тур	Max	Unit	Remark
View Angles	θΤ		30	35			
	θΒ	CR≧2	35	40	-	Dograd	Note 2
	θ		30	35		Degree	INOLE Z
	θR		30	35			
Contrast Ratio	CR	θ=0° 2	2.0	2.5			Note1、
Contrast Natio			2.0				Note3
Chyana atiaity (M/hita	X	Backlight	0.260	0.310	0.360		Note5
Chromaticity White	у	is off	0.270	0.320	0.370		Note1
Reflectance				5.5		%	Note1、
Reflectance				5.5		/0	Note6


Test Conditions:

- 2. I_F = 20mA, V_F =19.2V,the ambient temperature is 25 $^{\circ}$ C.
- 3. The test systems refer to Note 1 and Note 2.


Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Item	Photo detector	Field
Contrast Ratio		
Luminance	SR-3A	10
Chromaticity	SR-SA	
Lum Uniformity		
Response Time	BM-7A	2°

Note 2: Definition of viewing angle range and measurement system. viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

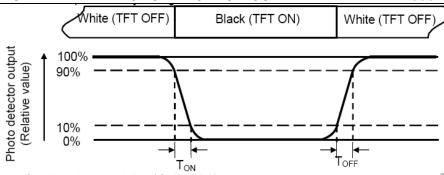
Note 3: Definition of contrast ratio

Contrast ratio (CR) = Luminance measured when LCD is on the "White" state

Luminance measured when LCD is on the "Black" state

"White state ": The state is that the LCD should drive by Vwhite.

"Black state": The state is that the LCD should drive by Vblack.

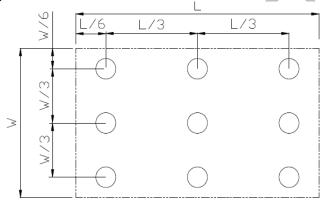

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

TM035HBHT6 V2.2

Note 5: Definition of color chromaticity (CIE1931)


Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/Lmax

L-----Active area length W---- Active area width

Lmax: The measured Maximum luminance of all measurement position.

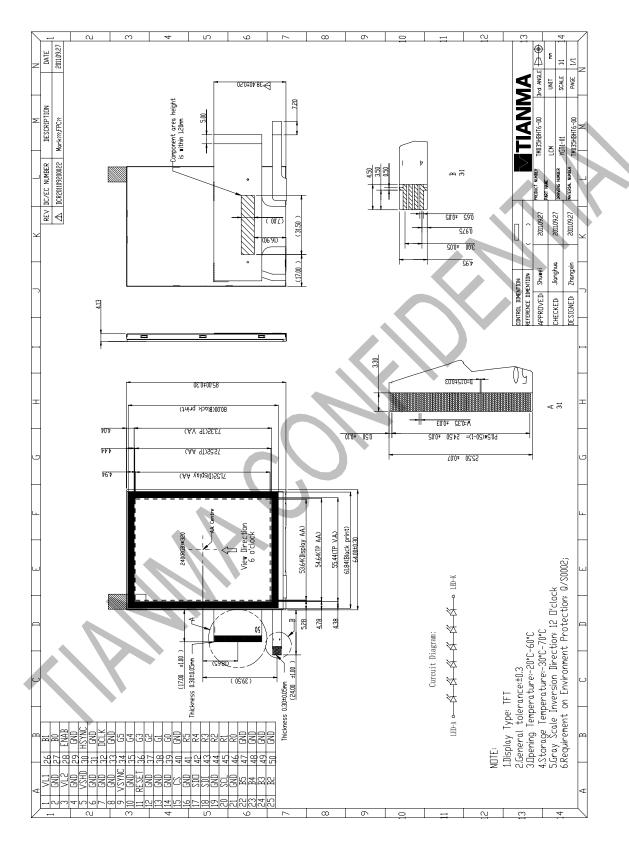
Lmin: The measured Minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.

TM035HBHT6 V2.2

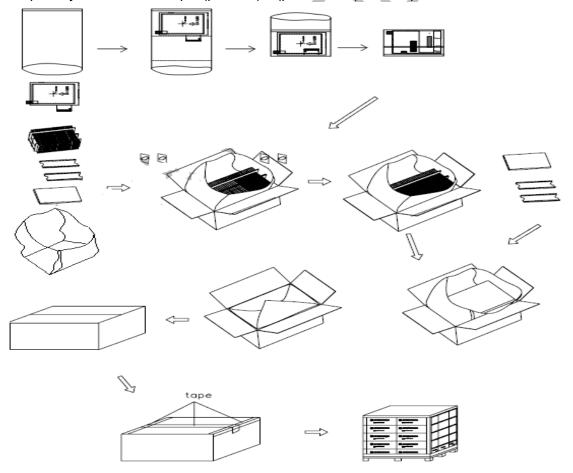
8. Environmental / Reliability Test


No	Test Item	Condition	Remarks
1	High Temperature Operation	Ts = +60°C, 240 hours	Note1 IEC60068-2-1,GB2423.2
2	Low Temperature Operation	Ta = -20℃, 240 hours	IEC60068-2-1 GB2423.1
3	High Temperature Storage	Ta = +70℃, 240 hours	IEC60068-2-1 GB2423.2
4	Low Temperature Storage	Ta = -30℃, 240 hours	IEC60068-2-1 GB2423.1
5	Storage at High Temperature and Humidity	Ta = +40℃, 90% RH max,240hours	Note2 IEC60068-2-78 GB/T2423.3
6	Thermal Shock (non-operation)	-30°C 30 min~+70°C 30 min, Change time:5min, 20 Cycle	Start with cold temperature, End with high temperature, IEC60068-2-14,GB2423.22
7	ESD	C=150pF,R=330Ω,5point/panel Air:±8Kv,5times; Contact:±4Kv,5times (Environment:15°C~35°C, 30%~60%.86Kpa~106Kpa)	IEC61000-4-2 GB/T17626.2
8	Vibration Test	Frequency range:10~55Hz Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 30 minutes for each direction of X.Y.Z. (1.5 hours for total)	IEC60068-2-6 GB/T2423.10
9	Mechanical Shock (Non Op)	Half Sine Wave 100G 6ms, ±X,±Y,±Z 3times for each direction	IEC60068-2-27 GB/T2423.5
10	Package Drop Test	Height:60cm, 1corner,3edges,6surfaces	IEC60068-2-32 GB/T2423.8

Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of samples.

9. Mechanical Drawing


10. Packing Drawing

10.1 Packaging Material

No	Item	Model(Material)	Dimensions (mm)	Unit Weigt (Kg)	Quantity	Remark
1	LCM module	ТМ035НВНТ6	64.0x85.0x2.93	0.044	112	
2	Partition_1	Corrugated paper	513X333X106	TBD	2	
3	Anti-static Bag	PE	170X105X0.05	0.001	112	Anti-static
4	Dust-Proof Bag	PE	700X530	0.06	1	
5	Partition_2	Corrugated Paper	505X332X4.0	0.098	3	
6	Corrugated Bar	Corrugated paper	513X126	0.048	8	
7	Carton	Corrugated paper	516X336X226	1.12	1	
8	Total weight					

Note: Packaging Specification and Quantity

Module quantity in a carton: 28pcs(per row)x2(per column)x2= 112pcs

11. Precautions for Use of LCD Modules

11.1Handling Precautions

- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaMinated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
 - 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

11.2Storage precautions

- 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:
- Temperature : 0°C ~ 40°C Relatively humidity: ≤80%
 - 10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

11.3 Transportation Precautions

10.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.