



### **Features**

- 155Mbps data links
- Up to 20km point-point transmission on SMF
- 1310nm FP transmitter and 1550nm PIN receiver for SPL-35-03-EBX-IDFM
- 1550nm FP transmitter and 1310nm PIN receiver for SPL-53-03-EBX-IDFM
- SFP MSA package with LC connector
- +3.3V single power supply
- Operating case temperature:-40~+85°C
- RoHS compliant

| Feature                                                   | Standard                          | Performance               |
|-----------------------------------------------------------|-----------------------------------|---------------------------|
| Electrostatic Discharge                                   | MIL-STD-883E                      | Class 1                   |
| (ESD) to the Electrical Pins                              | Method 3015.7                     |                           |
| Electrostatic Discharge (ESD) to the Duplex LC Receptacle | IEC 61000-4-2                     | Compatible with standards |
| Electromagnetic<br>Interference (EMI)                     | FCC Part 15 Class B               | Compatible with standards |
| Lagar Eva Safaty                                          | FDA 21CFR 1040.10 and 1040.11     | Compatible with Class I   |
| Laser Eye Safety                                          | EN60950, EN (IEC) 60825-1,2       | laser product.            |
| RoHS                                                      | 2002/95/EC 4.1&4.2<br>2005/747/EC | Compliant with RoHS       |

# **Regulatory Compliance**

# Table 1 - Regulatory Compliance

### **Absolute Maximum Ratings**

### **Table 2 - Absolute Maximum Ratings**

| Parameter                   | Symbol          | Min. | Typical | Max. | Unit | Notes |
|-----------------------------|-----------------|------|---------|------|------|-------|
| Storage Temperature         | Ts              | -40  | -       | +85  | °C   |       |
| Supply Voltage              | V <sub>cc</sub> | -0.5 | -       | +3.6 | V    |       |
| Operating Relative Humidity | RH              | +5   | -       | +95  | %    |       |



# **Recommended Operating Conditions**

### **Table 3 – Recommended Operating Conditions**

| Parameter                  | Symbol          | Min. | Typical | Max.  | Unit | Notes |
|----------------------------|-----------------|------|---------|-------|------|-------|
| Operating Case Temperature | T <sub>C</sub>  | -40  | -       | +85   | °C   |       |
| Power Supply Voltage       | V <sub>cc</sub> | 3.13 | 3.3     | 3.47  | V    |       |
| Power Supply Current       | I <sub>CC</sub> | -    | -       | 300   | mA   |       |
| Power Dissipation          | PD              | -    |         | 1.041 | W    |       |
| Data Rate                  |                 |      | 155     |       | Mbps |       |

# **Optical Characteristics**

## Table 4 – Optical Characteristics: SPL-35-03-EBX-IDFM

|                                         | т                | ransmitter |      |      |     |   |
|-----------------------------------------|------------------|------------|------|------|-----|---|
| Parameter Symbol Min. Typical Max. Unit |                  |            |      |      |     |   |
| Centre Wavelength                       | λ <sub>C</sub>   | 1260       | 1310 | 1360 | nm  |   |
| Average Output Power                    | Pout             | -14        |      | -8   | dBm | 1 |
| Spectral Width (RMS)                    | Δλ               |            | 2.5  | 7    | nm  |   |
| Extinction Ratio                        | EX               | 10         |      |      | dB  |   |
| Optical Isolation                       |                  | 30         |      |      | dB  |   |
| Optical Eye Mask ITU-T G.957 Compatible |                  |            |      |      |     | 2 |
|                                         |                  | Receiver   |      |      |     |   |
| Centre Wavelength                       | λ <sub>C</sub>   | 1450       | 1550 | 1580 | nm  |   |
| Receiver Sensitivity                    | P <sub>IN</sub>  |            |      | -32  | dBm | 3 |
| Receiver Overload                       | P <sub>IN</sub>  | -8         |      |      | dBm | 3 |
| Return Loss                             |                  | 14         |      |      | dB  |   |
| LOS Assert                              | LOS <sub>A</sub> | -45        |      |      | dBm |   |
| LOS Deassert                            | LOS <sub>D</sub> |            |      | -34  | dBm |   |
| LOS Hysteresis                          |                  | 0.5        |      | 5    | dB  |   |

Notes:

- 1. The optical power is launched into SMF
- 2. Measured with a PRBS 2<sup>23</sup>-1 test pattern @155Mbps.
- 3. Measured with PRBS  $2^{23}$  –1 test pattern@155Mbps, BER≤1×10<sup>-10</sup>.



### Table 5 – Optical Characteristics: SPL-53-03-EBX-IDFM

| Transmitter                             |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter Symbol Min. Typical Max. Unit |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| λ <sub>c</sub>                          | 1450                                                                                                                                                                                                                                                                    | 1550                                                                                                                                                                                                                                                                                                                                                           | 1580                                                                                                                                                                                                                                                                                                                               | nm                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Pout                                    | -14                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                | -8                                                                                                                                                                                                                                                                                                                                 | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Δλ                                      |                                                                                                                                                                                                                                                                         | 2.5                                                                                                                                                                                                                                                                                                                                                            | 4.6                                                                                                                                                                                                                                                                                                                                | nm                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| EX                                      | 10                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    | dB                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                         | 30                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    | dB                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Optical Eye Mask ITU-T G.957 Compatible |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                         | Receiver                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| λ <sub>C</sub>                          | 1260                                                                                                                                                                                                                                                                    | 1310                                                                                                                                                                                                                                                                                                                                                           | 1360                                                                                                                                                                                                                                                                                                                               | nm                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| P <sub>IN</sub>                         |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                | -32                                                                                                                                                                                                                                                                                                                                | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| P <sub>IN</sub>                         | -8                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                         | 14                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    | dB                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| LOS <sub>A</sub>                        | -45                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| LOS <sub>D</sub>                        |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                | -34                                                                                                                                                                                                                                                                                                                                | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                         | 0.5                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                  | dB                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                         | $\begin{tabular}{ c c } & Symbol \\ \hline $\lambda_{C}$ \\ $P_{0UT}$ \\ \hline $\Delta\lambda$ \\ \hline $EX$ \\ \hline $EX$ \\ \hline $A_{C}$ \\ \hline $A_{C}$ \\ \hline $P_{IN}$ \\ \hline $P_{IN}$ \\ \hline $P_{IN}$ \\ \hline $LOS_{A}$ \\ \hline \end{tabular}$ | Symbol         Min. $\lambda_{C}$ 1450 $P_{0UT}$ -14 $\Delta\lambda$ 10           EX         10           30         110           TU-T         -10 $\lambda_C$ 1260 $P_{IN}$ -8 $P_{IN}$ -8           14 $LOS_A$ LOS <sub>D</sub> -45 | Symbol         Min.         Typical $\lambda_c$ 1450         1550 $P_{0UT}$ -14         2.5 $\Delta\lambda$ 2.5         2.5           EX         10         2.5           EX         10         10           TU-TG.957 Company         30         1310 $\lambda_c$ 1260         1310 $P_{IN}$ -8         14 $LOS_A$ -45         14 | Symbol         Min.         Typical         Max. $\lambda_{C}$ 1450         1550         1580 $P_{0UT}$ -14         -8 $\Delta \lambda$ 2.5         4.6           EX         10         -4           EX         30         -4           TU-T G.957 Compatible         -32 $\lambda_{C}$ 1260         1310         1360 $\lambda_{C}$ 1260         1310         1360 $P_{IN}$ -8         -32 $P_{IN}$ 14         -32 $LOS_A$ -45         -34 | Symbol         Min.         Typical         Max.         Unit $\lambda_{C}$ 1450         1550         1580         nm $P_{OUT}$ -14         -8         dBm $\Delta \lambda$ 2.5         4.6         nm           EX         10         -4         dB           ITU-         30         ITU-         dB           ITU-         G.957 Compatible         dB         dB           ITU-         SUBST Compatible         ITU-         GB           ITU-         1310         1360         nm           P <sub>IN</sub> -8         GBm         GBm           P <sub>IN</sub> -8         GBm         GBm           LOS <sub>A</sub> -45         ITU-         GBm |  |  |

Notes:

1. The optical power is launched into SMF

2. Measured with a PRBS 2<sup>23</sup>-1 test pattern @155Mbps.

3. Measured with PRBS  $2^{23}$  –1 test pattern@155Mbps, BER≤1×10<sup>-10</sup>.

# **Electrical Characteristics**

### **Table 6 – Electrical Characteristics**

|                                | т                       | ransmitter |         |                 |      |       |
|--------------------------------|-------------------------|------------|---------|-----------------|------|-------|
| Parameter                      | Symbol                  | Min.       | Typical | Max.            | Unit | Notes |
| Data Input Swing Differential  | V <sub>IN</sub>         | 500        |         | 2400            | mV   | 1     |
| Input Differential Impedance   | Z <sub>IN</sub>         | 90         | 100     | 110             | Ω    |       |
| Tx_DIS Disable                 | V <sub>D</sub>          | 2.0        |         | V <sub>CC</sub> | V    |       |
| Tx_DIS Enable                  | V <sub>EN</sub>         | GND        |         | GND+0.8         | V    |       |
| TX_Fault (Fault)               |                         | 2.0        |         | Vcc+0.3         | V    |       |
| TX_Fault (Normal)              |                         | 0          |         | 0.8             | V    |       |
|                                |                         | Receiver   |         |                 |      |       |
| Data Output Swing Differential | V <sub>OUT</sub>        | 370        |         | 2000            | mV   | 1     |
| Rx_LOS Fault                   | V <sub>LOS-Fault</sub>  | 2.0        |         | Vcc+0.3         | V    |       |
| Rx_LOS Normal                  | V <sub>LOS-Normal</sub> | GND        |         | GND+0.8         | V    |       |
| Notoo:                         |                         |            |         |                 |      |       |

Notes:



1. Internally AC coupled

# **Recommended Host Board Power Supply Circuit**

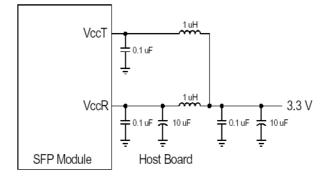



Figure 1, Recommended Host Board Power Supply Circuit

## **Recommended Interface Circuit**

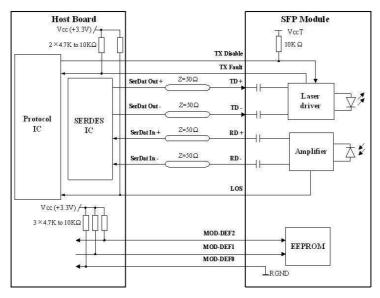
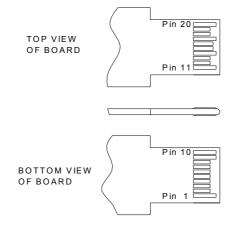




Figure 2, Recommended Interface Circuit

# **Pin Definitions**

Figure 3 below shows the pin numbering of SFP electrical interface. The pin functions are described in Table 7 with some accompanying notes.





#### Figure 3, Pin View

### **Table 7 - Pin Function Definitions**

| Pin No. | Name        | Function                     | Plug Seq. | Notes  |
|---------|-------------|------------------------------|-----------|--------|
| 1       | VeeT        | Transmitter Ground           | 1         |        |
| 2       | TX Fault    | Transmitter Fault Indication | 3         | Note 1 |
| 3       | TX Disable  | Transmitter Disable          | 3         | Note 2 |
| 4       | MOD-DEF2    | Module Definition 2          | 3         | Note 3 |
| 5       | MOD-DEF1    | Module Definition 1          | 3         | Note 3 |
| 6       | MOD-DEF0    | Module Definition 0          | 3         | Note 3 |
| 7       | Rate Select | Not Connected                | 3         |        |
| 8       | LOS         | Loss of Signal               | 3         | Note 4 |
| 9       | VeeR        | Receiver Ground              | 1         |        |
| 10      | VeeR        | Receiver Ground              | 1         |        |
| 11      | VeeR        | Receiver Ground              | 1         |        |
| 12      | RD-         | Inv. Received Data Out       | 3         | Note 5 |
| 13      | RD+         | Received Data Out            | 3         | Note 5 |
| 14      | VeeR        | Receiver Ground              | 1         |        |
| 15      | VccR        | Receiver Power               | 2         |        |
| 16      | VccT        | Transmitter Power            | 2         |        |
| 17      | VeeT        | Transmitter Ground           | 1         |        |
| 18      | TD+         | Transmit Data In             | 3         | Note 6 |
| 19      | TD-         | Inv. Transmit Data In        | 3         | Note 6 |
| 20      | VeeT        | Transmitter Ground           | 1         |        |

### Notes:

 TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.

 TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7k~10kΩ resistor. Its states are: Low (0~0.8V):



| (>0.8V, <2.0V):    | Undefined            |
|--------------------|----------------------|
| High (2.0~3.465V): | Transmitter Disabled |
| Open:              | Transmitter Disabled |

 MOD-DEF 0,1,2 are the module definition pins. They should be pulled up with a 4.7k~10kΩ resistor on the host board. The pull-up voltage shall be VccT or VccR.
 MOD-DEF 0 is grounded by the module to indicate that the module is present

MOD-DEF 1 is the clock line of two wires serial interface for serial ID

MOD-DEF 2 is the data line of two wires serial interface for serial ID

- 4. LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8V.
- 5. These are the differential receiver output. They are internally AC-coupled  $100\Omega$  differential lines which should be terminated with  $100\Omega$  (differential) at the user SERDES.
- 6. These are the differential transmitter inputs. They are AC-coupled, differential lines with  $100\Omega$  differential termination inside the module.

# **EEPROM Information**

The SFP MSA defines a 256-byte memory map in EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a 2 wire serial interface at the 8-bit address 1010000X (A0h). The memory contents refer to Table 8.

|       | Field Size |                 |                         |                                     |
|-------|------------|-----------------|-------------------------|-------------------------------------|
| Addr. | (Bytes)    | Name of Field   | Hex                     | Description                         |
| 0     | 1          | Identifier      | 03                      | SFP                                 |
| 1     | 1          | Ext. Identifier | 04                      | MOD4                                |
| 2     | 1          | Connector       | 07                      | LC                                  |
|       |            |                 | 00 xx 02 00 00 00       | Transmitter Code                    |
| 3—10  | 8          | Transceiver     | 00 XX 02 00 00 00       | xx:10 for SPL-35-03-EBX-IDFM and 08 |
|       |            |                 | 00 00                   | for SPL-53-03-EBX-IDFM              |
| 11    | 1          | Encoding        | 03                      |                                     |
| 12    | 1          | BR, nominal     | 02                      | 155Mbps                             |
| 13    | 1          | Reserved        | 00                      |                                     |
| 14    | 1          | Length (9um)-km | 14                      | 20km                                |
| 15    | 1          | Length (9um)    | C8                      | 20km                                |
| 16    | 1          | Length (50um)   | 00                      |                                     |
| 17    | 1          | Length (62.5um) | 00                      |                                     |
| 18    | 1          | Length (copper) | 00                      |                                     |
| 19    | 1          | Reserved        | 00                      |                                     |
| 20 25 | 16         | Vendor name     | 53 4F 55 52 43 45 50 48 | "SOURCEPHOTONICS"(ASC [])           |
| 20—35 | 10         | venuor name     | 4F 54 4F 4E 49 43 53 20 | SUBCEFICIONICS (ASCII)              |

| Table 0 - LEFROW Serial ID Wellioly Collettis (AUI) | Table 8 - EEPROM Serial ID M | lemory Contents (A0h) |
|-----------------------------------------------------|------------------------------|-----------------------|
|-----------------------------------------------------|------------------------------|-----------------------|

| source    |
|-----------|
| PHOTONICS |

| 36     | 1   | Reserved         | 00                      |                                            |
|--------|-----|------------------|-------------------------|--------------------------------------------|
| 37—39  | 3   | Vendor OUI       | 00 1F 22                |                                            |
| 40 55  | 16  | Van dan DN       | 53 50 4C xx xx 30 33 45 | 35 for SPL-35-03-EBX-IDFM(ASC II)          |
| 40—55  | 16  | Vendor PN        | 42 58 49 44 46 4D 20 20 | 53for SPL-53-03-EBX-IDFM (ASC II )         |
| 56—59  | 4   | Vendor rev       | 31 30 20 20             | ASC II ( "31 30 20 20" means 1.0 revision) |
| 60-61  | 2   | Wavelength       | 05 1E/06 0E             | 1310nm/1550nm                              |
| 62     | 1   | Reserved         | 00                      |                                            |
| 63     | 1   | CC BASE          | XX                      | Check sum of bytes 0 - 62                  |
| 64—65  | 2   | Options          | 00 1A                   | LOS, TX_FAULT and TX_DISABLE               |
| 66     | 1   | BR, max          | 00                      |                                            |
| 67     | 1   | BR, min          | 00                      |                                            |
| 68—83  | 16  | Vendor SN        | XX                      | ASC II .                                   |
|        |     |                  |                         | Year (2 bytes), Month (2 bytes), Day (2    |
| 84—91  | 8   | Vendor date code | XX                      | bytes)                                     |
| 92     | 1   | Diagnostic type  | 58                      |                                            |
| 93     | 1   | Enhanced option  | B0                      |                                            |
| 94     | 1   | SFF-8472         | 02                      |                                            |
| 95     | 1   | CC EXT           | XX                      | Check sum of bytes 64 - 94                 |
| 96-255 | 160 | Vendor specific  |                         |                                            |

Note: The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of SFF-8472 Rev 9.5.

### **Table 9-Monitoring Specification**

| Parameter    | Range         | Accuracy | Calibration <sup>*</sup> |  |
|--------------|---------------|----------|--------------------------|--|
| Temperature  | -40 to +95°C  | ±3°C     | External                 |  |
| Voltage      | 2.97 to 3.63V | ±3%      | External                 |  |
| Bias Current | 3mA to 80mA   | ±10%     | External                 |  |
| TX Power     | -8 to -14dBm  | ±3dB     | External                 |  |
| RX Power     | -8 to -32dBm  | ±3dB     | External                 |  |



# **Mechanical Diagram**

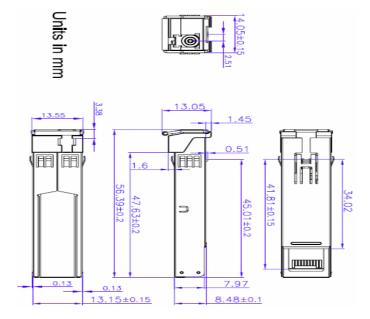



Figure 5, Mechanical Design Diagram of the SFP with Spring-Latch

# **Order Information**

### Table 10 – Order Information

| Part No.           | Application    | Data Rate | Laser Source               | Fiber Type |
|--------------------|----------------|-----------|----------------------------|------------|
| SPL-35-03-EBX-IDFM | 100Base-BX10-U | 155Mbps   | 1310nm FP Tx/1550nm PIN Rx | SMF        |
| SPL-53-03-EBX-IDFM | 100Base-BX10-D | 155Mbps   | 1550nm FP Tx/1310nm PIN Rx | SMF        |

# Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.
Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

# Legal Notice

### **IMPORTANT NOTICE!**

All information contained in this document is subject to change without notice, at Source Photonics's sole and absolute discretion. Source Photonics warrants performance of its products to current specifications only in accordance with the company's standard one-year warranty; however, specifications designated as "preliminary" are given to describe components only, and Source Photonics expressly disclaims any and all warranties for said



# SPL-35-03-EBX-IDFM SPL-53-03-EBX-IDFM

products, including express, implied, and statutory warranties, warranties of merchantability, fi tness for a particular purpose, and non-infringement of proprietary rights. Please refer to the company's Terms and Conditions of Sale for further warranty information.

Source Photonics assumes no liability for applications assistance, customer product design, software performance, or infringement of patents, services, or intellectual property described herein. No license, either express or implied, is granted under any patent right, copyright, or intellectual property right, and Source Photonics makes no representations or warranties that the product(s) described herein are free from patent, copyright, or intellectual property rights. Products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. Source Photonics customers using or selling products for use in such applications do so at their own risk and agree to fully defend and indemnify Source Photonics for any damages resulting from such use or sale.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. Customer agrees that Source Photonics is not liable for any actual, consequential, exemplary, or other damages arising directly or indirectly from any use of the information contained in this document. Customer must contact Source Photonics to obtain the latest version of this publication to verify, before placing any order, that the information contained herein is current.

# Contact

U.S.A. Headquarters 20550 Nordhoff Street Chatsworth, CA 91311 USA Tel: +1-818-773-9044 Fax: +1-818-773-0261 China Building #2&5, West Export Processing Zone No. 8 Kexin Road, Hi-Tech Zone Chengdu, 611731, China Tel: +86-28-8795-8788 Fax: +86-28-8795-8789

© Copyright Source Photonics, Inc. 2007~2012 All rights reserved

### Taiwan

9F, No 81, Shui Lee Rd. Hsinchu, Taiwan, R.O.C. Tel: +886-3-5169222 Fax: +886-3-5169213