



#### **Features**

- Support IEEE 802.3-2008 1000BASE-PX20++ GEPON OLT side application
- Support GEPON extended reach application
- Single fiber bi-directional data links with symmetric
   1.25Gbps upstream and downstream
- Integrated with micro-optics WDM filter for dual wavelength Tx/Rx operation at 1490/1310nm
- 1490nm continuous-mode transmitter with DFB laser
- 1310nm burst-mode receiver with APD-TIA
- Support more than 24dB dynamic range
- Digital diagnostic interface compliant with SFF-8472 Rev
   9.5
- Digital Receiving Signal Strength Indication (RSSI)
- Single 3.3V power supply
- Maximum 1W total power dissipation
- Spring-latch SFP (Small Form-factor Pluggable) package with SC receptacle optical interface.
- Operating case temperature: 0~70°C
- RoHS compliance

## **Regulatory Compliance**

**Table 1 - Absolute Maximum Ratings** 

| Feature                              | Standard                      | Performance                    |  |
|--------------------------------------|-------------------------------|--------------------------------|--|
| Electrostatic Discharge              | MIL-STD-883E                  | Class 1(> 500 \/)              |  |
| (ESD) to the Electrical Pins         | Method 3015.7                 | Class 1(>500 V)                |  |
| Electrostatic Discharge (ESD) to the | IEC 64000 4.2                 | Commetible with standards      |  |
| Duplex LC Receptacle                 | IEC 61000-4-2                 | Compatible with standards      |  |
| Electromagnetic                      | FCC Part 15 Class B           | Commetible with standards      |  |
| Interference (EMI)                   | EN55022 Class B (CISPR 22B)   | Compatible with standards      |  |
| Immunity                             | IEC 61000-4-3                 | Compatible with standards      |  |
| Lacar Fue Cafati                     | FDA 21CFR 1040.10 and 1040.11 | Compatible with Class I laser  |  |
| Laser Eye Safety                     | EN60950, EN (IEC) 60825-1,2   | product.                       |  |
| Component Recognition                | UL and CSA                    | Compliant with standards       |  |
| Dalle                                | 2002/95/EC 4.1&4.2            | Compaliant with standards note |  |
| RoHS                                 | 2005/747/EC                   | Compliant with standards note  |  |

### Note:

In light of item 5 in Annex of 2002/95/EC, "Pb in the glass of cathode ray tubes, electronic components and fluorescent tubes." and item 13 in Annex of 2005/747/EC, "Lead and cadmium in optical and filter glass.", the two exemptions are being concerned for Source Photonics transceivers, because Source Photonics transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.



# **Absolute Maximum Ratings**

**Table 2 - Absolute Maximum Ratings** 

| Parameter                   | Symbol | Min. | Typical | Max. | Unit | Notes |
|-----------------------------|--------|------|---------|------|------|-------|
| Storage Ambient Temperature | Ts     | -40  | -       | 85   | °C   |       |
| Operating Case Temperature  | Tc     | 0    |         | 70   | °C   | 1     |
| Operating Relative Humidity | RH     | 5    |         | 95   | %    |       |
| Power Supply Voltage        | Vcc    | 0    |         | 4    | V    |       |
| Input Voltage               |        | GND  |         | Vcc  | V    |       |
| Receiver Damaged Threshold  |        | 0    |         |      | dBm  |       |

Note 1: When ambient temperature is above 60°C, airflow at rate higher than 1m/sec is required.

# **Recommended Operating Conditions**

**Table 3 – Recommended Operating Conditions** 

| Parameter                   | Symbol          | Min. | Typical | Max. | Unit   | Notes |
|-----------------------------|-----------------|------|---------|------|--------|-------|
| Power Supply Voltage        | V <sub>CC</sub> | 3.13 | 3.3     | 3.47 | V      |       |
| Operating Case Temperature  | Tc              | 0    |         | 70   | °C     | 1     |
| Operating Relative Humidity | RH              | 5    |         | 95   | %      |       |
| Data Rate                   |                 |      | 1.25    |      | Gbit/s |       |
| Data Rate Drift             |                 | -100 |         | +100 | PPM    |       |

Note 1: When ambient temperature is above 60°C, airflow at rate higher than 1m/sec is required.

# **Optical Characteristics**

**Table 4 – Optical Characteristics** 

| Transmitter                          |           |      |         |      |       |       |  |  |  |
|--------------------------------------|-----------|------|---------|------|-------|-------|--|--|--|
| Parameter                            | Symbol    | Min. | Typical | Max. | Unit  | Notes |  |  |  |
| Centre Wavelength                    | λς        | 1480 |         | 1500 | nm    |       |  |  |  |
| Spectral Width (-20dB)               | Δλ        |      |         | 1    | nm    |       |  |  |  |
| Side Mode Suppression Ratio          | SMSR      | 30   |         |      | dB    |       |  |  |  |
| Average Launch Power                 | Pout      | 4.5  |         | 7    | dBm   | 1     |  |  |  |
| Average Launch Power-OFF Transmitter | $P_{OFF}$ |      |         | -39  | dBm   |       |  |  |  |
| Extinction Ratio                     | EX        | 9    |         |      | dB    | 2     |  |  |  |
| Total Jitter                         | TJ        |      |         | 0.43 | UI    | 2     |  |  |  |
| Rise/Fall Time (20%-80%)             | $T_R/T_F$ |      |         | 260  | ps    | 2,3   |  |  |  |
| RIN <sub>15</sub> OMA                |           |      |         | -115 | dB/Hz |       |  |  |  |



| Optical Return Loss Tolerance      |                                       |               |               | 12          | dB  |     |
|------------------------------------|---------------------------------------|---------------|---------------|-------------|-----|-----|
| Transmitter Reflectance            |                                       |               |               | -10         | dB  |     |
| Transmitter and dispersion Penalty | TDP                                   |               |               | 2.3         | dB  | 4   |
| Optical Eye Mask                   | Co                                    | ompliant With | n IEEE Std 80 | 2.3ah™-2004 |     | 2,5 |
|                                    | ı                                     | Receiver      |               |             |     |     |
| Operating Wavelength               | λc                                    | 1260          |               | 1360        | nm  |     |
| Sensitivity                        | Psen                                  |               |               | -32         | dBm | 6   |
| Saturation                         | P <sub>SAT</sub>                      | -6            |               |             | dBm | 6   |
| Receiver Threshold Settling Time   | T <sub>SETTLING</sub>                 |               |               | 250         | ns  | 6,7 |
| Dynamic Range                      |                                       | -32           |               | -6          | dBm | 6,8 |
| Loss of Signal Deassert Level      | P <sub>LOSD</sub>                     |               |               | -33         | dBm | 9   |
| Loss of Signal Assert Level        | P <sub>LOSA</sub>                     | -45           |               |             | dBm | 10  |
| LOS Hysteresis                     | P <sub>LOSD</sub> - P <sub>LOSA</sub> | 0.5           |               | 6           | dB  |     |
| Receiver Reflectance               |                                       |               |               | -12         | dB  |     |

#### Notes:

- 1. The optical power is launched into 9/125um SMF.
- 2. Measured with PRBS 2<sup>7</sup>-1 test pattern @1.25Gbps.
- 3. Measured with the Bessel-Thompson filter OFF.
- 4. Maximum sensitivity penalty due to transmitter and dispersion effect through 20km of SMF optical fiber.
- 5. Transmitter eye mask definition {0.22UI, 0.375UI, 0.20UI, 0.20UI, 0.30UI}.
- 6. Measured with a PRBS  $2^{7}$ -1 test pattern @1.25Gbps and ER=10dB, BER = $10^{-12}$ .
- 7. See Figure 1, 2. For multiple ONUs application, It isn't easy to test  $T_{\text{SETTLING}}$  directly, but there is a relationship  $T_{\text{SETTLING}} = T_{\text{GAP}} T_{\text{GUARD}}$  when  $T_{\text{ON}} = T_{\text{OFF}}$ , then  $T_{\text{SETTLING}}$  can be calculated by  $T_{\text{GAP}}$  and a certain quard time at ONU side.
- 8. See Figure 3. T<sub>GAP</sub> be less than 250ns is guaranteed.
- 9. An increase in optical power above the specified level will cause Los of Signal (LOS) output to switch from a high state to a low state.
- 10. A decrease in optical power below the specified level will cause Los of Signal (LOS) output to switch from a low state to a high state.



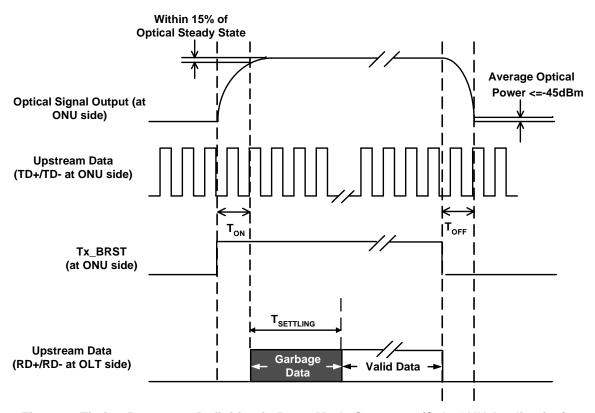



Figure 1, Timing Parameter Definition in Burst Mode Sequence (Sole ONU Application)

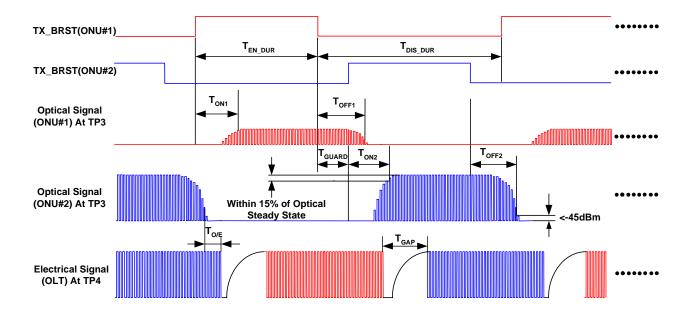



Figure 2, Timing Parameter Definition in Burst Mode Sequence (Dual ONUs Application)



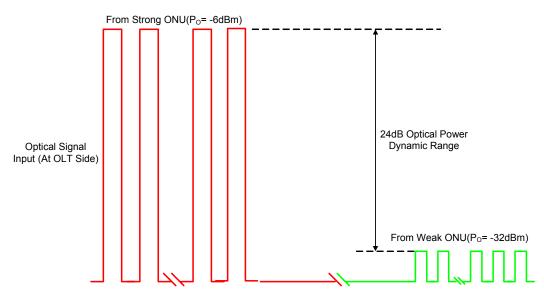



Figure 3, Burst Mode Receiver Dynamic Range

### **Electrical Characteristics**

Table 5 - Electrical Characteristics

| Transmitter                                 |                                  |          |         |       |                   |       |  |  |  |  |
|---------------------------------------------|----------------------------------|----------|---------|-------|-------------------|-------|--|--|--|--|
| Parameter                                   | Symbol                           | Min.     | Typical | Max.  | Unit              | Notes |  |  |  |  |
| Power Supply Current                        | I <sub>CC_TX</sub>               |          |         | 280   | mA                |       |  |  |  |  |
| Data Input Differential Swing               | $V_{IN}$                         | 200      |         | 1600  | mVp-p             | 1     |  |  |  |  |
| Input Differential Impedance                | $Z_{\text{IN}}$                  | 90       | 100     | 110   | Ω                 |       |  |  |  |  |
| Transmitter Disable Voltage - Low           | V <sub>TDIS, L</sub>             | 0        |         | 0.8   | V                 | 0     |  |  |  |  |
| Transmitter Disable Voltage - High          | $V_{\text{TDIS, H}}$             | 2.0      |         | Vcc   | V                 | 2     |  |  |  |  |
| Transmitter Fault Indication Voltage - Low  | V <sub>TFI, L</sub>              | 0        |         | 0.4   | V                 | 2     |  |  |  |  |
| Transmitter Fault Indication Voltage - High | V <sub>TFI, H</sub>              | 2.4      |         | Vcc   | V                 | 3     |  |  |  |  |
|                                             |                                  | Receiver |         |       |                   |       |  |  |  |  |
| Power Supply Current                        | I <sub>CC_RX</sub>               |          |         | 180   | mA                | 4     |  |  |  |  |
| Data Output Voltage - Low                   | V <sub>OL</sub> -V <sub>CC</sub> | -1.81    |         | -1.62 | V                 |       |  |  |  |  |
| Data Output Voltage - High                  | V <sub>OH</sub> -V <sub>CC</sub> | -1.02    |         | -0.88 | V                 |       |  |  |  |  |
| Data Output Differential Swing              | V <sub>OUT</sub>                 | 400      |         | 1600  | mV <sub>P-P</sub> | 5     |  |  |  |  |
| Loss of Signal (LOS) Voltage - Low          | V <sub>LOS, L</sub>              | 0        |         | 0.8   | V                 | 6     |  |  |  |  |
| Loss of Signal (LOS) Voltage - High         | V <sub>LOS, H</sub>              | 2.0      |         | Vcc   | V                 |       |  |  |  |  |
| Loss of Signal (LOS) Assert Time            | T <sub>ASS</sub>                 |          |         | 500   | ns                |       |  |  |  |  |
| Loss of Signal (LOS) Deassert Time          | T <sub>DAS</sub>                 |          |         | 500   | ns                |       |  |  |  |  |

#### Notes:

- 1. Compatible with LVPECL input, AC coupled internally. (See Recommended Interface Circuit)
- 2. TX Disable (See Pin Function Definitions).
- 3. TX Fault (See Pin Function Definitions) Internally AC coupled.



- 4. Supply current excluding receiver output load.
- 5. LVPECL output, DC coupled internally, guaranteed in the full range of input optical power (-6dBm to -33dBm) (See Recommended Interface Circuit).
- 6. LOS (See Pin Function Definitions).

## **Recommended Host Board Power Supply Circuit**

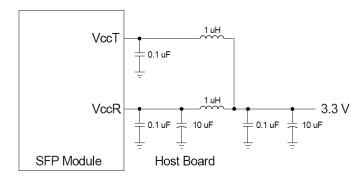



Figure 4, Recommended Host Board Power Supply Filtering Network

### **Recommended Interface Circuit**

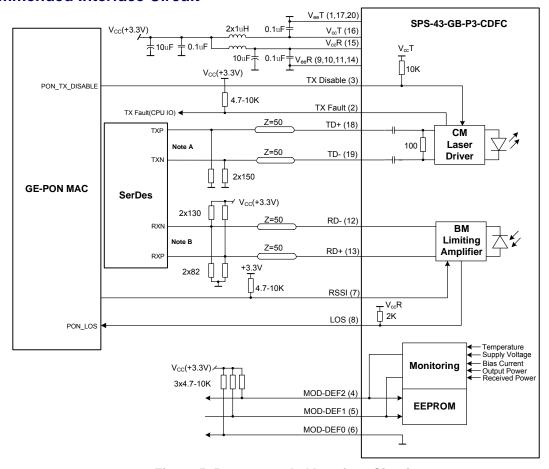



Figure 5, Recommended Interface Circuit

Note A: Circuit assumes open emitter output

Note B: Circuit assumes that proper internal bias voltage is not provided



### **Pin Definitions**

Figure 6 below shows the pin numbering of SFP electrical interface (Golden Finger). The pin functions are described in Table 6 and the accompanying notes.

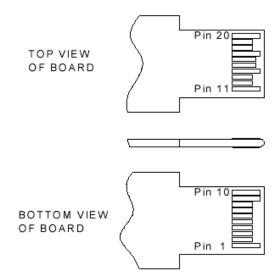



Figure 6, SFP Pin View (Golden Finger)

Table 6 -Pin Function Definitions

| Pin   | Name              | Description                          | Notes |
|-------|-------------------|--------------------------------------|-------|
| 1     | V <sub>ee</sub> T | Transmitter Ground                   |       |
| iner2 | TX Fault          | Transmitter Fault Indication         | 1     |
| 3     | TX Disable        | Transmitter Disable                  | 2     |
| 4     | MOD-DEF2          | Module Definition 2                  | 3     |
| 5     | MOD-DEF1          | Module Definition 1                  |       |
| 6     | MOD-DEF0          | Module Definition 0                  |       |
| 7     | RSSI              | LVTTL Active high, controlled by MAC |       |
| 8     | LOS               | Loss of Signal                       | 4     |
| 9     | V <sub>ee</sub> R | Receiver Ground                      |       |
| 10    | VeeR              | Receiver Ground                      |       |
| 11    | V <sub>ee</sub> R | Receiver Ground                      |       |
| 12    | RD-               | Inv. Receiver Data Out               | 5     |
| 13    | RD+               | Receiver Data Out                    |       |
| 14    | V <sub>ee</sub> R | Received Ground                      |       |
| 15    | V <sub>cc</sub> R | Receiver Power                       | 6     |
| 16    | V <sub>cc</sub> T | Transmitter Power                    |       |
| 17    | V <sub>ee</sub> T | Transmitter Ground                   |       |
| 18    | TD+               | Transmit Data In                     | 7     |
| 19    | TD-               | Inv. Transmit Data In                |       |
| 20    | V <sub>ee</sub> T | Transmitter Ground                   |       |



#### Notes:

- 1. TX Fault is an open collector/drain output, which should be pulled up with a  $4.7K-10K\Omega$  resistor on the host board. Pull up voltage between 2.0V and  $V_{cc}T$ , R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 2. TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a  $4.7-10~\mathrm{K}\Omega$  resistor. Its states are:

Low (0-0.8V): Transmitter on (>0.8, < 2.0V): Undefined

High (2.0-3.465V): Transmitter Disabled

Open: Transmitter Disabled

3. MOD-DEF0,1,2. These are the module definition pins. They should be pulled up with a 4.7K-10K $\Omega$  resistor on the host board. The pull-up voltage shall be  $V_{cc}T$  or  $V_{cc}R$ .

MOD-DEF0 is grounded by the module to indicate that the module is present

MOD-DEF1 is the clock line of two-wire serial interface for serial ID

MOD-DEF2 is the data line of two-wire serial interface for serial ID

- 4. LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a  $4.7K-10K\Omega$  resistor. Pull up voltage between 2.0V and  $V_{cc}T$ , R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 5. These are the differential receiver outputs. They are DC coupled 100  $\Omega$  differential lines which should be terminated with 100  $\Omega$  (differential) at the user SERDES. (See Recommended Interface Circuit)
- 6. V<sub>cc</sub>R and V<sub>cc</sub>T are the receiver and transmitter power supplies. They are defined as 3.3V±5% at the SFP connector pin. Maximum supply current is 300 mA. Recommended host board power supply filtering is shown in figure 4. Inductors with DC resistance of less than 1Ω should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply filtering network is used, hot plugging of the SFP transceiver module will result in an inrush current of no more than 30 mA greater than the steady state value.
- 7. These are the differential transmitter inputs. They are AC coupled differential lines with  $100\Omega$  differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. (See)



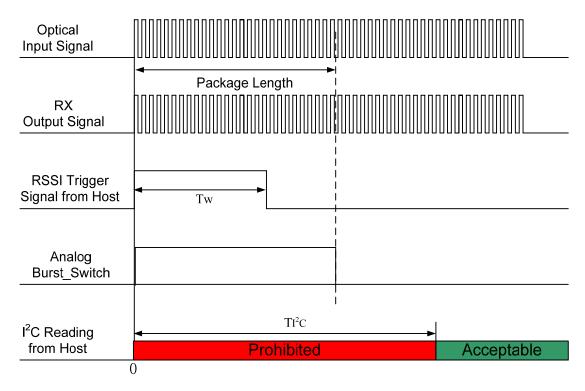



Figure 7, RSSI Timing Diagram

Table 7 – RSSI Parameter

| Item                           | Symbol | Min | Тур | Max | unit |
|--------------------------------|--------|-----|-----|-----|------|
| Trigger width                  | Tw     |     | 0.6 |     | us   |
| Package Length                 | Tpk    | 0.6 | 0.9 |     | us   |
| I <sup>2</sup> C response time | Tı²c   |     |     | 100 | us   |

#### Notes:

- 1. The length of input signal package should not less than 1.25us.
- 2. The interval of two trigger signals should not less than 125us.



#### **EEPROM Information**

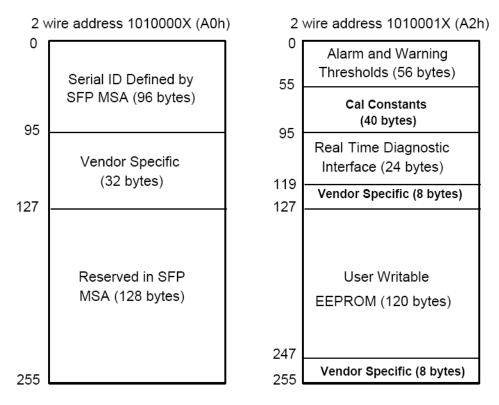



Figure 8, 2-wire Serial Digital Diagnostic Memory Map

Table 8 – EEPROM Serial ID Memory Contents (A0h)

| Addr. | Field Size (Bytes) | Name of Field   | Hex                     | Description                |
|-------|--------------------|-----------------|-------------------------|----------------------------|
| 0     | 1                  | Identifier      | 03                      | SFP transceiver            |
| 1     | 1                  | Ext. Identifier | 04                      | MOD4                       |
| 2     | 1                  | Connector       | 01                      | SC                         |
| 3-10  | 8                  | Transceiver     | 00 00 00 80 00 00 00 00 | BASE-PX                    |
| 11    | 1                  | Encoding        | 01                      | 8B10B                      |
| 12    | 1                  | BR, Nominal     | 0D                      | 1.25Gbps                   |
| 13    | 1                  | Reserved        | 00                      |                            |
| 14    | 1                  | Length (9um)-km | 1E                      | 30(km)                     |
| 15    | 1                  | Length (9um)    | 00                      | 300(100m)                  |
| 16    | 1                  | Length (50um)   | 00                      | Not Support MMF            |
| 17    | 1                  | Length (62.5um) | 00                      | Not Support MMF            |
| 18    | 1                  | Length (Copper) | 00                      | Not Support Copper         |
| 19    | 1                  | Reserved        | 00                      |                            |
| 20.25 | 46                 | \/andar nama    | 53 4F 55 52 43 45 50 48 | "SOURCEPHOTONICS "(ASC II) |
| 20-35 | 16                 | Vendor name     | 4F 54 4F 4E 49 43 53 20 | "SOURCEPHOTONICS" (ASC II) |
| 36    | 1                  | Reserved        | 00                      |                            |
| 37-39 | 3                  | Vendor OUI      | 00 00 00                |                            |



| 40-55 16 |    | Vendor PN       | 53 50 53 34 33 47 42 50 | "SPS43GBP3CDFC" (ASCII)                 |  |
|----------|----|-----------------|-------------------------|-----------------------------------------|--|
|          |    |                 | 33 43 44 46 42 20 20 20 | · ·                                     |  |
| 56-59    | 4  | Vendor Rev      | xx xx 20 20             | ASCII("30 31 20 20" means 1.0 Revision) |  |
| 60-61    | 2  | Wavelength      | 05 D2                   | 1490nm Laser Wavelength                 |  |
| 62       | 1  | Reserved        | 00                      | 3.                                      |  |
| 63       | 1  | CC_BASE         | XX                      | Check sum of byte 0-62                  |  |
| 64-65    | 2  | Options         | 00 1A                   | LOS,TX FAULT and TX DISABLE             |  |
| 66       | 1  | BR, max         | 00                      |                                         |  |
| 67       | 1  | BR, min         | 00                      |                                         |  |
|          |    |                 | XX XX XX XX XX XX XX XX |                                         |  |
| 68-83    | 16 | Vendor SN       | XX XX XX XX XX XX XX XX | ASCII                                   |  |
|          |    |                 |                         | Year(2 bytes), Month(2 bytes),          |  |
| 84-91    | 8  | Date code       | xx xx xx xx xx xx 20 20 | Day(2 bytes)                            |  |
|          |    |                 |                         | Compliant with SFF-8472 V9.5            |  |
|          |    | Diagnostic      |                         | Externally Calibrated                   |  |
| 92       | 1  | Monitoring Type | 58                      | Received power measurement type         |  |
|          |    |                 |                         | -Average Power                          |  |
|          |    |                 |                         | Diagnostics (Optional                   |  |
|          |    |                 |                         | Alarm/warning flags)                    |  |
| 93       | 1  | Enhanced        | F0                      | Soft TX_FAULT monitoring                |  |
| 93       | ı  | Options         | ΓU                      | implemented                             |  |
|          |    |                 |                         | Soft RX_LOS monitoring                  |  |
|          |    |                 |                         | implemented                             |  |
| 94       | 1  | SFF-8472        | 02                      | Diagnostics                             |  |
| 94       | 1  | Compliance      | UZ                      | Compliance(SFF-8472 V9.5)               |  |
| 95       | 1  | CC_EXT          |                         | Check sum of byte 64-94                 |  |
| 96-255   | 64 | Vendor Specific |                         |                                         |  |
|          |    | •               |                         |                                         |  |

Note: The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of SFF-8472 Rev 9.5.

Table 9 - Digital Diagnostic Specification (A2h)

| Data Address | Parameter    | Range          | Accuracy |  |  |  |  |
|--------------|--------------|----------------|----------|--|--|--|--|
| 96-97        | Temperature  | -40 to +80°C   | ±3°C     |  |  |  |  |
| 98-99        | Vcc Voltage  | +3.0V to +3.6V | ±3%      |  |  |  |  |
| 100-101      | Bias Current | 0 to 100mA     | ±10%     |  |  |  |  |
| 102-103      | TX Power     | 0 to 8dBm      | ±2dB     |  |  |  |  |
| 104-105      | RX Power     | -30 to -6dBm   | ±2dB     |  |  |  |  |



# **Mechanical Diagram**

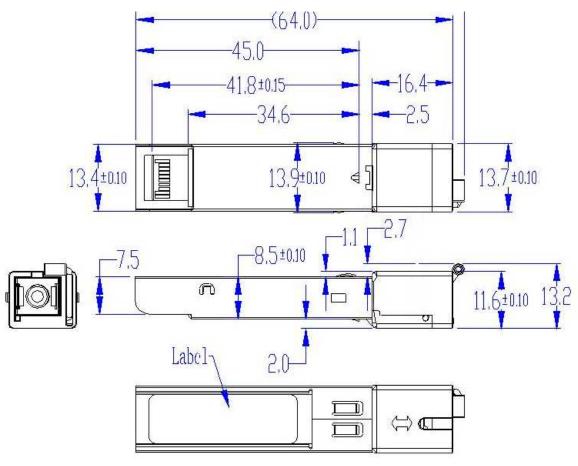



Figure 9 Mechanical Diagram

## **Order Information**

**Table 10 - Order Information** 

| Part No.          | Application                            | Data Rate          | Laser Source | Fiber Type |  |  |  |
|-------------------|----------------------------------------|--------------------|--------------|------------|--|--|--|
| SPS-43-GB-P3-CDFC | 1000BASE-PX20++ OLT Extended reach OLT | 1.25Gb/s symmetric | 1490nm DFB   | SMF        |  |  |  |



### **Warnings**

**Handling Precautions:** This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures. **Laser Safety:** Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

#### **Legal Notice**

#### **IMPORTANT NOTICE!**

All information contained in this document is subject to change without notice, at Source Photonics' sole and absolute discretion. Source Photonics warrants performance of its products to current specifications only in accordance with the company's standard one-year warranty; however, specifications designated as "preliminary" are given to describe components only, and Source Photonics expressly disclaims any and all warranties for said products, including express, implied, and statutory warranties, warranties of merchantability, fitness for a particular purpose, and non-infringement of proprietary rights. Please refer to the company's Terms and Conditions of Sale for further warranty information.

Source Photonics assumes no liability for applications assistance, customer product design, software performance, or infringement of patents, services, or intellectual property described herein. No license, either express or implied, is granted under any patent right, copyright, or intellectual property right, and Source Photonics makes no representations or warranties that the product(s) described herein are free from patent, copyright, or intellectual property rights. Products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. Source Photonics customers using or selling products for use in such applications do so at their own risk and agree to fully defend and indemnify Source Photonics for any damages resulting from such use or sale.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. Customer agrees that Source Photonics is not liable for any actual, consequential, exemplary, or other damages arising directly or indirectly from any use of the information contained in this document. Customer must contact Source Photonics to obtain the latest version of this publication to verify, before placing any order, that the information contained herein is current.

#### Contact

| U.S.A. Headquarters       | China                                      | Taiwan                       |
|---------------------------|--------------------------------------------|------------------------------|
| 20550 Nordhoff Street     | Building #2&5, West Export Processing Zone | 9F, No 81, Shui Lee Rd.      |
| Chatsworth, CA 91311      | No. 8 Kexin Road, Hi-Tech Zone             | Hsinchu, 300, Taiwan         |
| USA                       | Chengdu, 611731, China                     | R.O.C.                       |
| Tel: +1-818-773-9044      | Tel: +86-28-8795-8788                      | Tel: +886-3-5169222          |
| Fax: +1-818-773-0261      | Fax: +86-28-8795-8789                      | Fax: +886-3-5169213          |
| sales@sourcephotonics.com | sales@sourcephotonics.com.cn               | sales@sourcephotonics.com.tw |

© Copyright Source Photonics, Inc. 2007~2012
All rights reserved