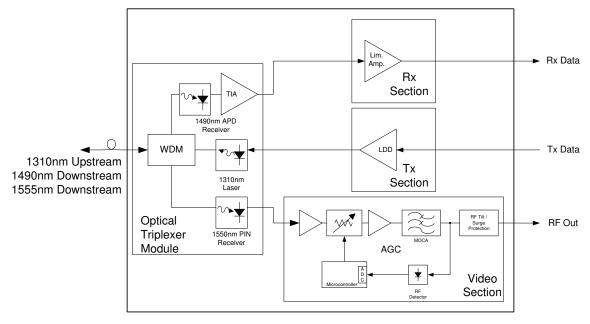
ITR-D3T-SD9

1310/1490/1555nm Integrated Triplexer Transceiver


Features

- Single fiber, integrated triplexer transceiver
- Compliant to FSAN G.984.2& G.984.5 specifications
- Voice/Data/Video FTTx ONT/ONU applications
- 1310nm Tx, 1490nm Rx, 1555nm video Rx
- 1244Mbps Tx / 2488Mbps Rx asymmetric data rate
- Burst mode upstream transmission
- 1555nm CATV Wavelength Blocking Filter
- 870MHz Video Bandwidth
- -40 to 85°C Operation
- Feedback Video AGC Operation
- 20km reach
- 28dB power budget
- Meets UL 94V-1 flammability

- Digital Transmitter: A DFB laser diode is employed for upstream transmission at OC-24 (1244Mbps). The optical transmitter includes a back facet photodetector to monitor laser power for APC control.

- Digital Receiver: An APD with TIA is employed for downstream data reception at OC-48 (2488Mbps). A post amplifier is also included for CML output compatibility.

- Analog Receiver: 870MHz forward path video (CATV) receiver with multiple gain stages, automatic gain control (AGC), and status indicators.

Triplexer Block Diagram

Absolute Maximum Ratings

Usage of this transceiver shall adhere to the following absolute maximum ratings. Stresses beyond those in Table 1 may cause permanent damage to the unit. These are stress ratings only, and functional operation of the unit at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect unit reliability.

Table 1 - Absolute Maximum Ratings							
Parameter	Minimum	Maximum	Unit/Conditions				
Ambient Storage Temperature	-40	85	°C				
Operating Temperature*	-40	85	°C				
Operating Case Humidity Range	10%	90%	non-condensing				
ESD Sensitivity (Human Body Model)	-	1000	V				
Lead Soldering Temperature	-	260ºC	10 sec				
Vdd_+12V	-0.3	15	V				
Vdd power-on rise time	150	-	us				
Vcc_Rx	-0.3	4	V				
Vcc_Tx	-0.3	4	V				
Vcc_µC	-0.3	+4.2	V				

*Operating temp: minimum is ambient, maximum is case.

Module Characteristics

Table 2 - Optical Characteristics						
Parameter	Minimum	Typical	Maximum	Unit/Conditions		
Optical Isolation			-30	dB		
From external 1310 (1260 – 1360) nm to 1490 (1480 – 1500) nm Rx			-30	UD		
Optical Isolation			-40	dB		
From external 1310 (1260 – 1360) nm to 1555 (1550 – 1560) nm Rx			-40	uв		
Optical Cross-talk			-47	dB		
From internal 1310 (1260 – 1360) nm TX to 1490 (1480 – 1500) nm Rx			-47	uв		
Optical Cross-talk			47	۹D		
From internal 1310 (1260 – 1360) nm TX to 1555 (1550 – 1560) nm Rx			-47	dB		
Optical Isolation			00	٩D		
From external 1490 (1480 – 1500) nm to 1555 (1550 – 1560) nm Rx			-32	dB		
Optical Isolation						
From external 1555 nm to 1490 nm Rx			-32			
Optical Isolation Wavelength Blocking Filter				10		
From external 1530 nm(>1530nm) to 1490 (1480 – 1500) nm Rx	30			dB		
Optical Isolation Wavelength Blocking Filter	y Filter					
From external 1450 nm(<1450nm) to 1490 (1480 – 1500) nm Rx	30			dB		

Parameter	Minimum	Typical	Maximum	Unit/Conditions
Optical Isolation Wavelength Blocking Filter	30			dB
From external 1577 (1575 – 1625) nm to 1550 (1550 – 1560) nm Rx	30			uв
Optical Return Loss				
1490 nm band			-20	dB
1555 nm band				
Optical Return Loss @ 1310 nm	-	-	-6	dB

Functional Characteristics

The following tables list the performance specifications for the various functional blocks of the integrated optical transceiver module.

Table 3 – Digital Transmitter Specifications						
Parameter	Minimum	Typical	Maximum	Unit	Notes	
Operating Voltage	3.15	3.30	3.45	V	V _{CC} referenced to GND_Tx	
Data Rate	-	1244.16	-	Mbps		
Average Optical Output Power, Po	0.5	-	5	dBm		
Output Power at Transmit Off	-	-	-40	dBm		
Side Mode Suppression Ration (SMSR)	30	-	-	dB		
Extinction Ratio	10	-	-	dB	PRBS 2 ²³ -1, NRZ, 50% duty cycle	
Operational Wavelength	1290	-	1330	nm		
Transmitter Output Eye	G	i.984.2 Figure	3			
Optical Rise and Fall Time	-	250	-	ps	20% to 80%	
Differential Input Voltage, Vin	200	-	1800	mVp-p	BEN+/- and TXD+/ DC-coupled	
Input Impedance, differential	-	100	-	Ω	BEN+/-, TXD+/- (see Figure 1)	
Common-Mode Input Voltage	-	Vcc-1.32	-	V	DC coupled	
Tx Burst Enable Time	-	-	12.86	ns	16 bits data @ 1244Mbps	
Tx Burst Disable Time	-	-	12.86	ns	16 bits data @ 1244Mbps	
TX_SD Delay (Timing "D")		40	200	ns	See Figure 2	
TX_SD Width Difference (Timing "X")			100	ns	See Figure 2	
TX_SD Startup Time (T _{TX_SD_STARTUP})			3	S	See Figure 3	

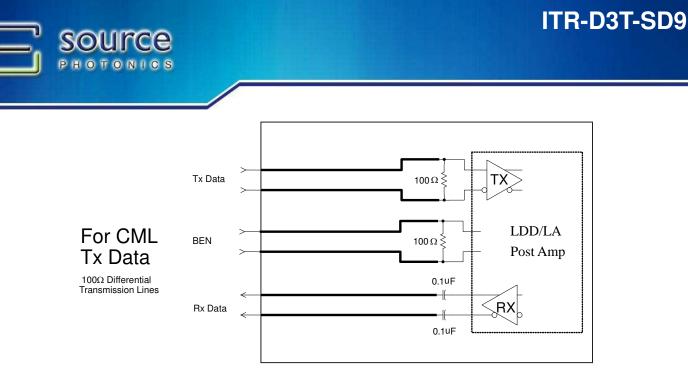
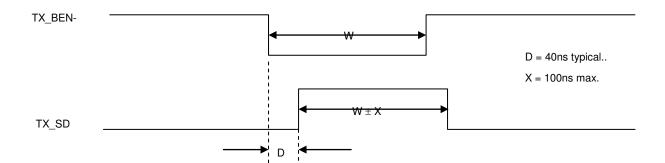
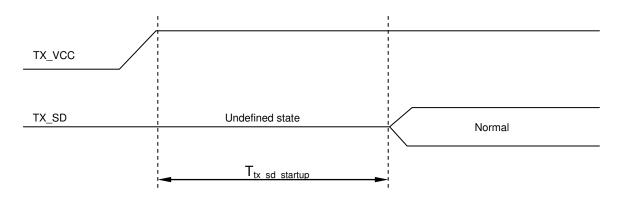




Figure 1 – Schematic representation of the module high speed inputs/outputs

Table 4 – Digital Receiver Specifications

Parameter	Minimum	Typical	Maximum	Unit	Notes
Operating Voltage	3.15	3.30	3.45	V	V _{CC} referenced to GND_RX
Data Rate	-	2488.32	-	Mbps	
Operational Wavelength Range	1480	-	1500	nm	
Sensitivity	-28	-	-	dBm	With Tx on
Overload	-	-	-8	dBm	
Bit Error Rate (BER)		-	10 ⁻¹⁰		
Optical Return Loss	20	-	-	dB	
Data Output Rise and Fall Time	-	160	-	ps	20% to 80%
Signal Detect Assertion Level	-		-28	dBm	Transition during increasing light
Signal Detect De-Assertion Level	-38	-	-	dBm	Transition during decreasing light
Signal Detect Hysteresis	0.5	-	6	dB	
Differential Output Voltage	750	900	1050	mV	CML output, ac coupled (0.1µF)
Signal Detect Output HIGH Voltage	2.0	-	-	v	LVTTL with internal pull up resistor. Asserts HIGH when input data amplitude is above threshold.
Signal Detect Output LOW Voltage	-	-	0.4	v	LVTTL. De-asserts LOW when input data amplitude is below threshold .
RSSI Range ^a	-28		-8	dBm	
RSSI Accuracy	-3	-	+3	dB	

a) Externally calibrated.

Table 5 – Video Receiver Specifications Parameter Minimum Typical Maximum Unit Notes ٧ **Operating Voltage** 11.7 -13.2 Supply Current -250 mΑ -Frequency Range 54 870 MHz -**Receiver Wavelength** 1550 1555 1560 nm Responsivity 0.8 --A/W AGC Time Constant 0.5 15 s Video PD Monitor Accuracy dB -3 3 -Channel Bandwidth MHz -4 -**Channel Spacing** 6 MHz --Received Average Optical Power -8 2 dBm -% Analog OMI% / carrier 4.3 OMI 2.15 % Digital OMI% / carrier (Freq > 550MHz)

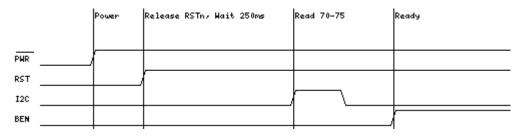
ITR-D3T-SD9

Parameter	Minimum	Typical	Maximum	Unit	Notes
RF Output 550 MHz	19		26	dBmV	For digital channels > 550MHz, RF
	19	-	20	UBIIIV	levels are 6dB lower
RF Output Power Tilt	2	-	7	dB	
AGC Tolerance with Respect to Optical	0		3	dB	@97.25 MHz, min 19.5dBmV/Ch to 26
Input Power at 550Mhz	0	-	3	uв	dBmV/Ch Max, Over temp
Peak to Peak Flatness	-2	-	2	dB	
S22 Output Return Loss	14	-	-	dB	75Ω
CSO	-	-	-55	dBc	For > 550MHz, CSO is 7dB higher
СТВ	-	-	-55	dBc	For > 550MHz, CTB is 7dB higher
					CNR measurement correlated to SCTE
Carrier to Noise Ratio(CNR)	46	-	-	dB	standard, At -8dBm input power, 3.4%
					ОМІ

Table 6 – Microcontroller Specifications

Parameter	Minimum	Typical	Maximum	Unit	Notes
Operating Voltage	3.15	3.30	3.45	V	
					LVTTL, open collector serial data line
SDAª	-	-	-	-	from the I ² C bus to the on board
					Microcontroller
					LVTTL, open collector serial clock line
SCL ^{a,b}	-	-	-	-	from the I ² C bus to the on board
					Microcontroller
	00				LVTTL input, internal 50 Ω pull-up. Active
Reset Hold ^c	30	-	-	ms	Low.

a) I2C SDA and SCL must be open collector or open drain connections


b) Clock stretching, as per paragraph 13.2 of the I2C bus standard, must be implemented to operate correctly

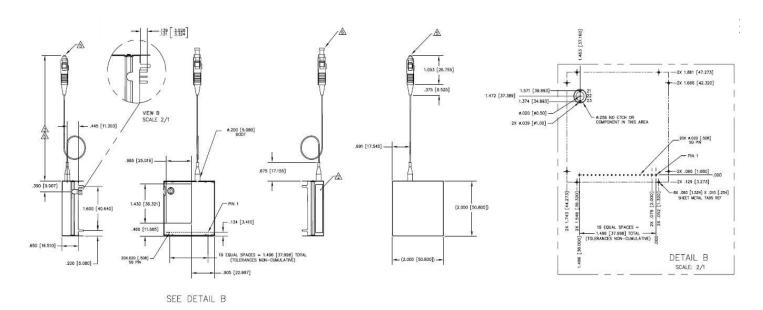
c) Please see table & timing diagram below for a recommended system start-up sequence.

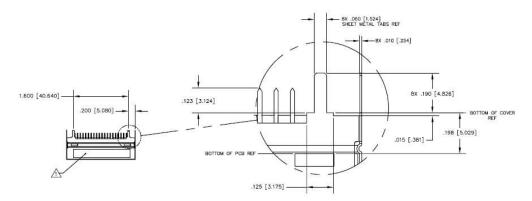
Table 7 – Microcontroller Specifications							
Parameter	Minimum	Typical	Maximum	Unit	Notes		
DDM Temp Accuracy	-5	-	+5	°C	Note: MCU temp		
DDM VCC Accuracy	-5	-	+5	%			
DDM RSSI Accuracy	-3	-	+3	dB			
DDM VpdMon Accuracy	-3		+3	dB			
DDM RfMon Accuarcy	-3		+3	dB			
DDM Bias Current Accuarcy	-15		15	%			
DDM TX Power Accuarcy	-3		+3	dB			

Table 8 – Sugg	jested Start-up Sequence					
Step	Action					
1	Power up the host system, with the RESET pin pulled to ground via $a \le 4.7k$ resistor.					
2	Drive the RESET pin LOW.					
3	Set the BEN control lines to disable the transmitter (BEN lines must be driven with differential logic).					
4	Ensure power to the unit is on.					
5	Drive the RESET pin HIGH to release the unit to become operational.					
6	Wait approximately 250ms					
7	Read bytes A2.70/71/74/75 to clear the interrupt condition. Verify that byte A2.75 bit 7 was set. Use multi-byte read of bytes					
/	70/71 and bytes 74/75. (If software interrupt feature is not used, this step may be skipped)					
8	The unit is now ready for normal operation.					

Pin Definitions

Table 9 - Modu	le Pin Definitions	
Pin Number	Label	Definition
1	GND_A	Common ground
2	GND_Rx	Digital Rx ground
3	Vcc_Rx	Digital Rx Vcc
4	SD	Signal Detect output. LVTTL with internal $3.3 \mathrm{k}\Omega$ pull-up. Asserts HIGH when input optical signal level is
	00	above threshold.
5	RXD+	RX data output, CML. 50 Ω terminated to Vcc and AC coupled to module output (0.1 $\mu F)$
6	RXD-	RX data bar output, CML. 50 Ω terminated to Vcc and AC coupled to module output (0.1 $\mu F)$
7	BEN+	Burst Enable input, internally DC coupled.
8	BEN-	Burst Enable bar input, internally DC coupled.
9	GND_Tx	Digital Tx ground
10	TXD+	Tx data input, LVPECL. Internally DC coupled. 100Ω differential termination.





Pin Number	Label	Definition
11	GND_Tx	Digital Tx ground
12	TXD-	Tx data bar input, LVPECL. Internally DC coupled. 100Ω differential termination.
13	Vcc_Tx	Digital Tx Vcc
14	SDA	I ² C Data input/output. LVTTL
15	SCL	I ² C Clock input. LVTTL
16	Tx_SD	Tx signal detect. Active high
17	Vdd_+12V	Video Rx 12V Vdd
18	Vcc_3.3V	Microcontroller Vcc
19	Reset	Reset input. LVTTL. Internal pull up. Active low.
20	GND_A	Common ground
21	RF_GND	RF ground
22	RF_SIGNAL	RF signal
23	RF_GND	RF ground

Package Diagram

A PICTURED WITH DUST COVER.

A PICTURED WITHOUT DUST COVER.

4. TOLERANCE ±.08 [2.07]

▲ 39.37±1.18 INCH LONG (1000 +/-30). 900uM BUFFERED FIBER TERMINATED WITH SC CONNECTOR. ▲ SOURCE PHOTONICS LABEL. ▲ CUSTOMER LABEL.

NOTES: UNLESS OTHERWISE SPECIFIED

VIEW A SCALE 6/1

Ordering Information

Table11 – Valid Part Numbers	
Part Number	Description
ITR-D3T-SD9	GPON ONT triplexer optical transceiver, SC/APC, I-temp operation

Table 12 - Device Handling/ESD Protection	
The devices are static sensitive and may easily be damaged if care is not taken during handling. The following handling practices are	
recommended.	
1	Devices should be handled on benches with conductive and grounding surfaces.
2	All personnel, test equipment and tools shall be grounded.
3	Do not handle the devices by their leads.
4	Store devices in protective foam or carriers.
5	Avoid the use of non-conductive plastics, rubber, or silk in the area where the devices are handled
6	All modules shall be packaged in materials that are anti-static to protect against adverse electrical environments.
	Avoid applications of any voltage higher than maximum rated voltages to this part. For proper operation, any VIN or VOUT should be
7	constrained to the range GND \leq (VIN or VOUT) \leq VCC. Unused inputs must always be tied to an appropriate logic voltage (e.g. either
	GND or VCC). Unused outputs must be left open.

Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Legal Notice

IMPORTANT NOTICE!

All information contained in this document is subject to change without notice, at Source Photonics' sole and absolute discretion. Source Photonics warrants performance of its products to current specifications only in accordance with the company's standard one-year warranty; however, specifications designated as "preliminary" are given to describe components only, and Source Photonics expressly disclaims any and all warranties for said products, including express, implied, and statutory warranties, warranties of merchantability, fitness for a particular purpose, and non-infringement of proprietary rights. Please refer to the company's Terms and Conditions of Sale for further warranty information.

Source Photonics assumes no liability for applications assistance, customer product design, software performance, or infringement of patents, services, or intellectual property described herein. No license, either express or implied, is granted under any patent right, copyright, or intellectual property right, and Source Photonics makes no representations or warranties that the product(s) described herein are free from patent, copyright, or intellectual property rights. Products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. Source Photonics customers using or selling products for use in such applications do so at their own risk and agree to fully defend and indemnify Source Photonics for any damages resulting from such use or sale.

© Copyright Source Photonics, Inc. 2007~2008

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Source Photonics product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Source Photonics or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Source Photonics be liable for damages arising directly from any use of the information contained in this document.

Contact

SOURCE PHOTONICS 20550 NORDHOFF ST. CHATSWORTH, CA 91311

sales@sourcephotonics.com Tel: 818-773-9044 Fax: 818-576-9486 Or visit our website: <u>http://www.sourcephotonics.com</u>