

XPP-XE -X3-CDFB

Features

- Single fiber, integrated triplexer transceiver
- Support IEEE802.3-av 10/1G base PRX30 asymmetric EPON OLT
- Support IEEE802.3-2008 EPON OLT
- Integrated with micro-optics WDM filter for triplexer
- 1577nm continuous-mode transmitter with EML laser
- 1490nm continuous-mode transmitter with DFB laser
- 1310nm burst-mode receiver with APD-TIA
- Digital Diagnostic INF-8077i Compliant
- +3.3V and +5V power supplies
- Operating case temperature:-5-70°C
- RoHS Compliant

Regulatory Compliance

Table 1 – Regulatory Compliance

Feature	Standard	Performance	
Electrostatic Discharge (ESD) to the	MIL-STD-883E	$C_{1222} = 1 (> 500) ()$	
Electrical Pins	Method 3015.7	Class 1 (>500V)	
Electrostatic Discharge (ESD) at the	IEC 61000-4-2	Compatible with Standarda	
Faceplate	1EC 81000-4-2	Compatible with Standards	
	FCC Part 15 Class B		
Electromagnetic	EN55022 Class B (CISPR 22B)	Compatible with Standards	
Interference (EMI)	VCCI Class B		
Logor Evo Safoty	FDA 21CFR 1040.10 and 1040.11	Compatible with Class 1 Laser	
Laser Eye Safety	EN60950, EN (IEC) 60825-1,2	Product	
RoHS Compliance	2011/65/EU	Compatible with Standards	

Note:

In light of item 5 in Annex of 2011/65/EU, "Pb in the glass of cathode ray tubes, electronic components and fluorescent tubes." and item 13 in Annex of 2005/747/EC, "Lead and cadmium in optical and filter glass.", the two exemptions are being concerned for Source Photonics transceivers, because Source Photonics transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

Absolute Maximum Ratings

Table 2 – Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Storage Temperature	Ts	-40	-	+85	°C	
Supply Voltage	Vcc3	-0.5		+4.0	V	
Supply Voltage	Vcc5	-0.5	-	+6.0	V	
Operating Relative Humidity	RH	-	-	85	%	

Recommended Operating Conditions

Table 3 – Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Supply Voltage	V _{CC3}	3.14	3.3	3.46	V	
	V _{CC5}	4.75	5.0	5.25	V	
Supply Current	Icc ₃	-	-	650	mA	
Supply Current	Icc5			380	IIIA	
Operating Temperature (Case)	Topr	-5	-	70	°C	

Optical and Electrical Characteristics

Table 4 – Optical Characteristics

Transmitter										
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes				
10G Transmitter										
Transmitter Signal Rate			10.3125G							
Centre Wavelength	λ _C	1575	1577	1580	nm					
Optical Spectrum Width (-20dB)	Δλ			1	nm					
Side Mode Suppression Mode	SMSR	30			dB					
Average Launch Power	P _{OUT}	2		5	dBm	1				
Average Launch Power-OFF Transmitter	P _{OFF}			-39	dBm					
Extinction Ratio	EX	6			dB	2				
Total Jitter	TJ			±0.23	UI	2				
Rise/Fall Time (20%-80%)	T _R /T _F			50	ps	2,3				
RIN ₁₅ OMA				-128	dB/Hz					
Optical Return Loss Tolerance				15	dB					
Transmitter Reflectance				-10	dB					
Transmitter and dispersion Penalty	TDP			1.5	dB					

Optical Eye Mask Compliant With IEEE Std 802.3av™-2009						
	1G 1	ransmitter				
Transmitter Signal Rate			1.25G			
Centre Wavelength	λ _C	1480	1490	1500	nm	
Optical Spectrum Width (-20dB)	Δλ			1	nm	
Side Mode Suppression Mode	SMSR	30			dB	
Average Launch Power	Pout	3		7	dBm	1
Average Launch Power-OFF Transmitter	P _{OFF}			-39	dBm	
Extinction Ratio	EX	9				5
Total Jitter	TJ			±0.43	UI	5
Rise/Fall Time (20%-80%)	T _R /T _F			260	ps	3,5
RIN ₁₅ OMA				-115	dB/Hz	
Optical Return Loss Tolerance				12	dB	
Transmitter Reflectance				-10	dB	
Transmitter and dispersion Penalty	TDP			2.3	dB	
Optical Eye Mask	C	compliant Wi	th IEEE Std 8			5,6
	R	Receiver				
Operating Wavelength	λ _C	1260	1310	1360	nm	
Sensitivity	P _{SEN}			-30	dBm	7
Saturation	P _{SAT}	-9			dBm	
Receiver Threshold Settling Time	T _{setting}			400	ns	7,8
Dynamic Range		-30		-9	dBm	7,9
Loss of Signal Deassert	PLOSD		-	-33	dBm	
Loss of Signal Assert	P _{LOSA}	-45	-		dBm	
LOS Hysteresis	P _{LOSD} - P _{LOSA}	0.5	-	6	dB	
Receiver Reflectance				-12	dB	

Notes:

- 1. The optical power is launched into 9/125um SMF.
- 2. Measured with PRBS 2³¹-1 test pattern @10.3125Gbps.
- 3. Measured with the Bessel-Thompson filter OFF.
- 4. Transmitter eye mask definition {0.25UI, 0.40UI, 0.45UI, 0.25UI, 0.28UI,0.40UI}.
- 5. Measured with PRBS 2⁷-1 test pattern @1.25Gbps.
- 6. Transmitter eye mask definition {0.22UI, 0.375UI, 0.20UI, 0.20UI, 0.30UI}.
- 7. Measured with a PRBS 2⁷-1 test pattern @1.25Gbps and ER=9dB, BER =10⁻¹²
- 8. See Figure 1, 2. For multiple ONUs application, It isn't easy to test $T_{SETTLING}$ directly, but there is a relationship $T_{SETTLING} = T_{GAP} T_{GUARD}$ when $T_{ON} = T_{OFF}$, then $T_{SETTLING}$ can be calculated by T_{GAP} and a certain guard time at ONU side.
- 9. See Figure 2. T_{GAP} be less than 250ns is guaranteed.

Table 5 – Electrical Specifications and Timing

_		smitter								
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes				
10G Transmitter										
Data Input Differential Swing	V _{IN}	120		820	mVp-p	1				
Input Differential Impedance	Z _{IN}	80	100	120	Ω					
Transmitter Disable Voltage - Low	V _{TDIS, L}	0		0.8	V	2				
Transmitter Disable Voltage - High	V _{TDIS, H}	2.0		Vcc	V	2				
	1G Tra	ansmitter								
Data Input Differential Swing	V _{IN}	200		1600	mVp-p	3				
Input Differential Impedance	Z _{IN}	90	100	110	Ω					
Transmitter Fault Indication Voltage -	VTFI, L	0		0.4	V					
Low										
Transmitter Fault Indication Voltage - High	VTFI, H	2.4		Vcc	V					
	Re	ceiver								
Data Output Differential Swing	V _{OUT}	400		1600	mV_{P-P}	4				
Loss of Signal Voltage - Low	V _{SD, L}	0		0.4	V	5				
Loss of Signal Voltage - High	V _{SD, H}	2.4		V _{CC3}	V	5				
Loss of Signal Assert Time	T _{LOSA}			512	nS					
Loss of Signal Deassert Time	T _{LOSD}			512	ns					
Output Differential Impedance	R _{out}	80	100	120	Ω					
Time to Initialize 2-Wire Interface	t_2w_start_u p	-	-	300	ms					
Time to Initialize	T_start_up	-	-	300	ms					

Notes:

1. Compatible with CML input, AC coupled internally. (See Recommended Interface Circuit).

- 2. Tx_Diable (See <u>Pin Function Definitions</u>).
- 3. Compatible with LVPECL input, AC coupled internally. (See <u>Recommended Interface Circuit</u>).
- 4. Compatible with LVPECL Output, DC coupled internally. guaranteed in the full range of input optical power (See <u>Recommended Interface Circuit</u>)
- 5. LOS (See <u>Recommended Interface Circuit</u>).

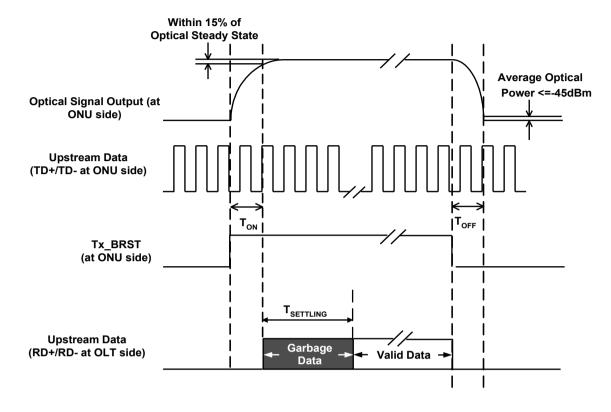


Figure 1, Timing Parameter Definition in Burst Mode Sequence (Sole ONU Application)

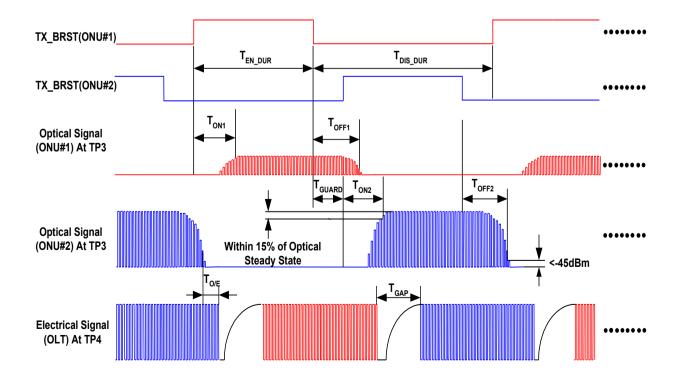


Figure 2, Timing Parameter Definition in Burst Mode Sequence (Dual ONUs Application)

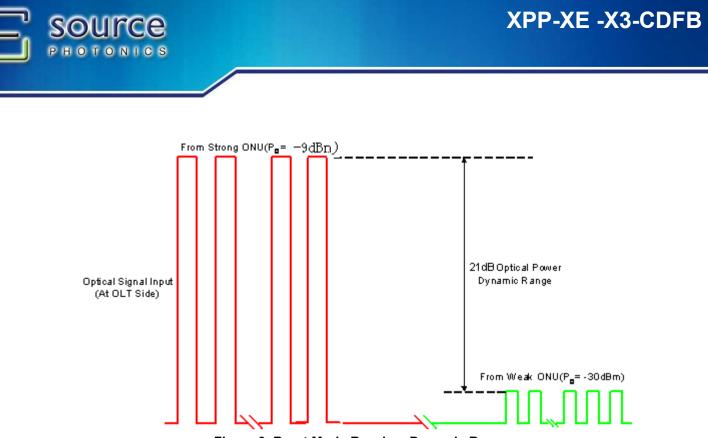


Figure 3, Burst Mode Receiver Dynamic Range

Diagnostics

Table 6 – Diagnostics(A0h)

Address	Parameter	Range	Accuracy	Unit	Calibration	Notes
96-97	Temperature	-10 to 80	±3	°C	Internal	LSB equal to 1/256C
98-99	Voltage	0 to Vcc	±3%	V	Internal	LSB equal to 100uV
100-101	Bias Current	0 to140(10G)	10%	mA	Internal	LSB equal to 4uA
106-107	bias Current	0 to 80(1G)	10%	IIIA	memai	LSB equal to 4uA
102-103	Ty Dowor	0 to 6(10G)	1.2	dB	Internel	LSB equal to 0.4uW
108-109	Tx Power	-1 to 8(1G)	±3	UB	Internal	LSB equal to 0.4uW
104-105	Rx Power	-30 to -9	±3	dB	External	LSB equal to 0.1uW

Table 7 – EEPROM Serial ID (01h)

Name of Field	Description of Field	Address	Hex	ASCII
Identifier	Type of transceiver	128	06	XFP
Ext. Identifier	Extended identifier of type of transceiver	129	B0	
Connector	Code for connector type	130	01	SC/UPC
		131	00	
		132	00	
Transsoiver	Code for electronic compatibility or	133	00	
Transceiver	optical compatibility	134	80	BASE-PX
		135	00	
		136	00	

		137	00	
		138	00	
Encoding	Code for high speed serial encoding algorithm	139	80	64B/66B
BR_MIN	Minimum bit rate, units of 100 MBits/s.	140	67	10.3125Gbp
BR_MAX	Maximum bit rate, units of 100 MBits/s	141	67	s
Length (SMF)_Km	Link length supported for single mode fiber, units of km	142	14	20km
Length (E-50um)	Link length supported for EBW 50/125 µm, units of 2 m	143	00	
Length (20µm)	Link length supported for 20 um OM2 fiber, units of 10 m	144	00	
Length (62.5µm)	Link length supported for 62.5 um OM1 fiber, units of 10 m	145	00	
Length (Copper)	Link length supported for copper, units of meters	146	00	
Device Tech		147	F6	EML Laser and APD
		148	53	S
		149	4F	0
		150	55	U
		151	52	R
		152	43	С
		153	45	E
		154	50	Р
Vendor Name	Vondor name (ASCII)	155	48	Н
VENUUI MAINE	Vendor name (ASCII)	156	4F	0
		157	54	Т
		158	4F	0
		159	4E	N
		160	49	<u> </u>
		161	43	С
		162	53	S
		163	20	[Space]

Table 8 – EEPROM Serial ID (01h)

Name of Field	Description of Field	Address	Hex	ASCII
CDR support	CDR Rate Support	164	40	For 10.3 Gbps
Vendor OUI	XED vonder IEEE company ID for	165	00	
	XFP vendor IEEE company ID for		1F	

	Source Photonics Inc.	167	22	
		168	58	Х
		169	50	Р
		170	50	Р
		171	58	Х
		172	45	E
		173	58	Х
	Part number in ASCII, e.g.	174	33	3
	XPPXEX3CDFB	175	43	С
Vendor PN		176	44	D
		177	46	F
		178	42	В
		179	20	[Space]
	F	180	20	[Space]
		181	20	[Space]
		182	20	[Space]
		183	20	[Space]
Vendor Rev.	Revision level for part number provide by	184	30	04 ·
	vendor (ASCII)	185	31	01version
	Laser wavelength, nm	186	7B	4577
Wavelength		187	3C	1577nm
	Guaranteed range of laser wavelength	188	03	
Wavelength tolerance	(+/- value) from Nominal wave-length.	189	E8	5nm
Max Case Temp	Maximum Case Temperature	190	4B	75c
CC_BASE	Check code for Base ID Fields addresses (120-190)	191	xx	
		192	AF	3.5W(max)
	Power supply current requirements and	193	00	
Power Supply	max power dissipation	194	8A	
		195	00	
Vendor SN	Serial number provided by vendor	196	XX XX XX XX	
Date Code	Vendor's manufacturing date code	212	XX XX XX XX XX XX	
Diagnostic Monitoring Type	Indicates which type of diagnostic monitoring is implemented	220	08	Average power
Enhanced Option	Indicates which optional enhanced features are implemented	221	xx	

AUX monitoring	Defines quantities reported by Aux. A/D channels	222	27	+3.3v power supply
CC_EXT	Check code for the Extended ID Fields (addresses 192 to 222)	223	xx	
Wavelength for 2.5G		224	XX XX	
Wayalangth for 1.250		226	74	1490nm
Wavelength for 1.25G		227	68	14901111
			XX XX XX	
Vendor Spec.		228	xx xx xx	
			xx xx	

Table 9 – Pin Definitions

Pi	Logic	Symbol	Name/Description	
n			•	1
1		GND	Module Ground	1
2	LVPECL-I	TX_1G+	Transmitter Non-Inverted Data Input(1G)	2
3	LVPECL-I	TX_1G-	Transmitter Inverted Data Input(1G)	2
4		GND	Module Ground	
5	LVTTL-I	TX_DIS	Turn off Transmitter Laser Out, Control 10G and 1G Transmitter	3
6		V _{CC5}	+5V Power Supply(For TEC)	
7		GND	Module Ground	
8		V _{CC3}	+3.3V Power Supply(TX)	
9		V _{CC3}	+3.3V Power Supply(RX)	
10	LVTTL-I	SCL	2-Wire Serial Interface Clock	
11	LVTTL-I/O	SDA	2-Wire Serial Interface Data Line	
12	LVTTL-O	MOD_ABS	Module Absent Indication	
13		NC	Not Connect	
14	LVTTL-O	RX_LOS	Receiver Loss of Signal Indication	4
15		GND	Module Ground	2
16		GND	Module Ground	2
17		RX_10G-	Receiver Inverted Data Output(10G), default is NC	
18		RX_10G+	Receiver Non-Inverted Data Output(10G), default is NC	-
19		GND	Module Ground	2
20	LVPECL-O	RD-	Receiver Inverted Data Output(1G)	5
21	LVPECL-O	RD+	Receiver Non-Inverted Data Output(1G)	5
22		NC	Not Connect	
23	LVTTL-I	RX_RSSI_TRIG	RSSI Trigger Input	
24		NC	Not Connect	
25		NC	Not Connect	
26		NC	Not Connect	2

27		GND	Module Ground	
28	CML-I	TD-	Transmitter Inverted Data Input(10G)	6
29	CML-I	TD+	Transmitter Non-Inverted Data Input(10G)	0
30		GND	Module Ground	2

Note

- 1. Module ground pins GND are isolated from the module case and chassis ground within the module.
- 2. Compatible with LVPECL/CML input, AC coupled internally. (See Recommended Interface Circuit)
- 3. Tx_Diable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7-10 K Ω resistor.
- LOS is an open collector/drain output, which should be pulled up with a 4.7K-10KΩ resistor. Pull up voltage between 2.0V and V_{CCT}. (See <u>Recommended Interface Circuit</u>) These are the differential receiver outputs.
- 5. They are DC coupled 100 Ω differential lines which should be terminated with 100 Ω (differential) at the user SERDES. (See <u>Recommended Interface Circuit</u>)
- 6. These are the differential transmitter inputs. They are AC coupled differential lines with 100Ω differential termination inside the module. (See <u>Recommended Interface Circuit</u>)

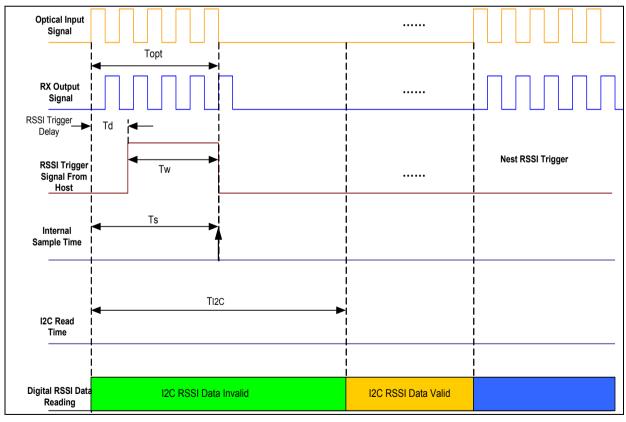
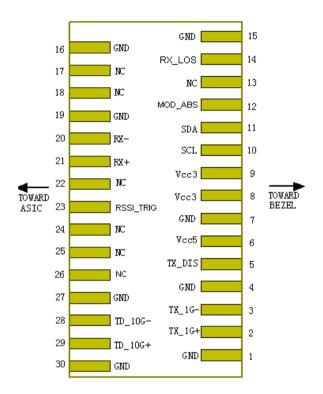
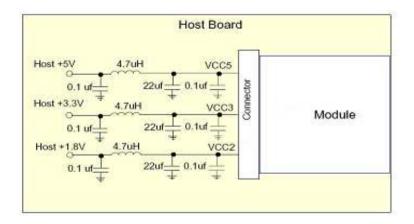


Figure 4, RSSI Timing Diagram

Table 10 – RSSI Parameter


Item	Symbol	Min	Тур	Max	unit
Trigger width	T _w		600		ns

XPP-XE -X3-CDFB



Trigger Delay	Td			600	ns
Package Length	T _{pk}	1000	1200		ns
Internal Sampling Time	Ts	1000			ns
I ² C response time	T _{I2C}	500			us

Module PCB Pin out

Recommended Host Board Power Supply Circuit

Recommended Interface Circuit

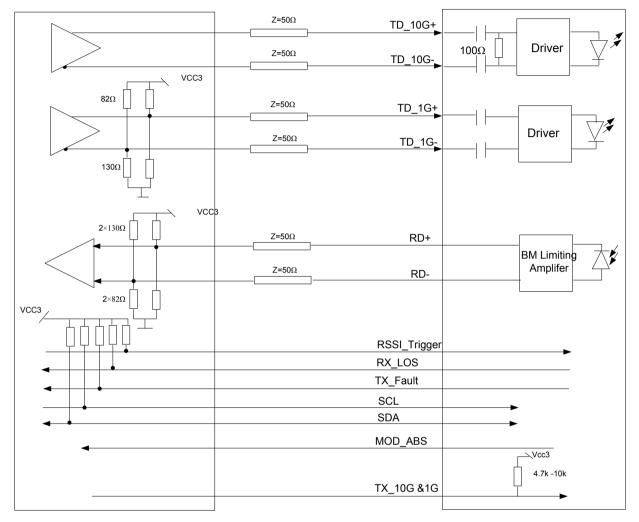
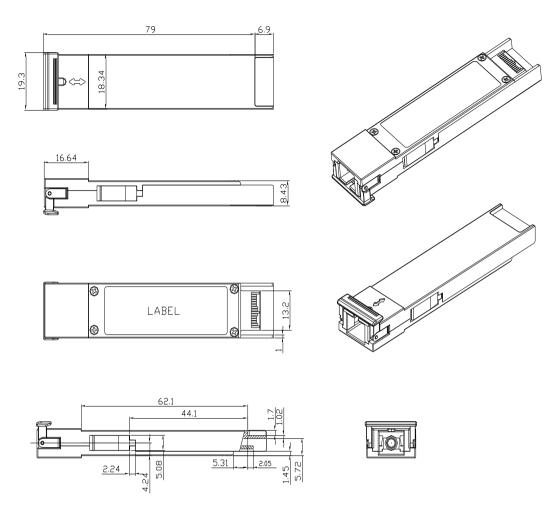




Figure 5, Recommended Interface Circuit

Mechanical Design

Order Information

Table 11– Order Information

Part No.	Application	Data Rate	Laser Source	Fiber Type
XPP-XE- X3-CDFB	10/1G Base PRX30 OLT	Tx1 1.25Gb/s ,Tx2 10.3125G and Rx 1.25Gb/s asymmetric	1490 nm DFB 1577 nm EML	SMF

Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Legal Notice

IMPORTANT NOTICE!

All information contained in this document is subject to change without notice, at Source Photonics' sole and absolute discretion. Source Photonics warrants performance of its products to current specifications only in accordance with the company's standard one-year warranty; however, specifications designated as "preliminary" are given to describe components only, and Source Photonics expressly disclaims any and all warranties for said products, including express, implied, and statutory warranties, warranties of merchantability, fitness for a particular purpose, and non-infringement of proprietary rights. Please refer to the company's Terms and Conditions of Sale for further warranty information.

Source Photonics assumes no liability for applications assistance, customer product design, software performance, or infringement of patents, services, or intellectual property described herein. No license, either express or implied, is granted under any patent right, copyright, or intellectual property right, and Source Photonics makes no representations or warranties that the product(s) described herein are free from patent, copyright, or intellectual property rights. Products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. Source Photonics customers using or selling products for use in such applications do so at their own risk and agree to fully defend and indemnify Source Photonics for any damages resulting from such use or sale.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. Customer agrees that Source Photonics is not liable for any actual, consequential, exemplary, or other damages arising directly or indirectly from any use of the information contained in this document. Customer must contact Source Photonics to obtain the latest version of this publication to verify, before placing any order, that the information contained herein is current.

Contact

U.S.A. Headquarters 20550 Nordhoff Street Chatsworth, CA 91311 USA Tel: +1-818-773-9044 Fax: +1-818-773-0261 sales@sourcephotonics.com China Building #2&5, West Export Processing Zone No. 8 Kexin Road, Hi-Tech Zone Chengdu, 611731, China Tel: +86-28-8795-8788 Fax: +86-28-8795-8789 sales@sourcephotonics.com.cn

© Copyright Source Photonics, Inc. 2007~2008 All rights reserved Taiwan 9F, No 81, Shui Lee Rd. Hsinchu, 300, Taiwan R.O.C. Tel: +886-3-5169222 Fax: +886-3-5169213 sales@sourcephotonics.com.tw