

μ**A79M00 Series**

Negative-Voltage Regulators

This series of fixed-negative-voltage monolithic integrated-circuit voltage regulators is designed to complement the μ A78M00 series in a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 500 mA of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power pass element in precision regulators.

Rochester Electronics Manufactured Components

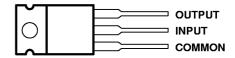
Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

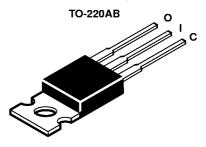
Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

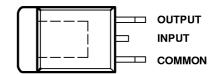
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

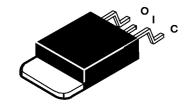

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

- 3-Terminal Regulators
- Output Current Up to 500 mA
- No External Components
- **High Power Dissipation Capability**
- **Internal Short-Circuit Current Limiting**
- **Output Transistor Safe-Area Compensation**
- Direct Replacements for Fairchild µA79M00 **Series**


description

This series of fixed-negative-voltage monolithic integrated-circuit voltage regulators is designed to complement the $\mu A78M00$ series in a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 500 mA of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power pass element in precision regulators.


KC PACKAGE (TOP VIEW)

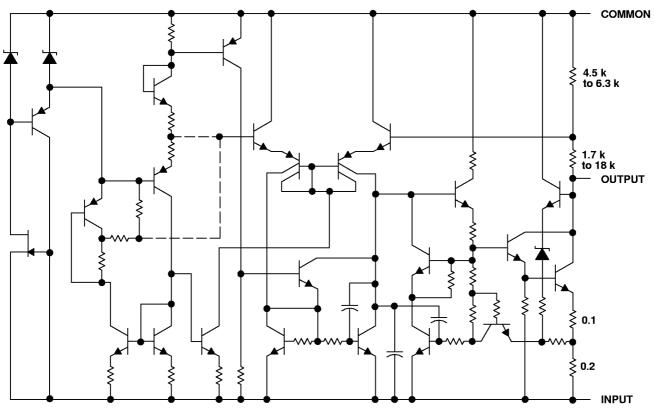

The input terminal is in electrical contact with the mounting base.

KTP PACKAGE (TOP VIEW)

The input terminal is in electrical contact with the mounting base.

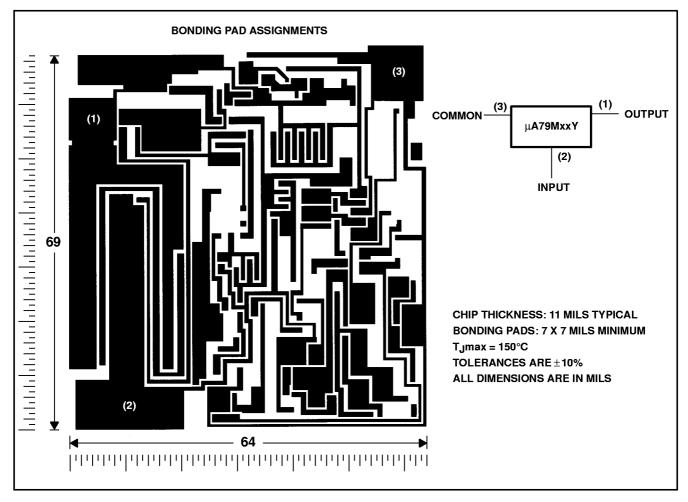
AVAILABLE OPTIONS

		PACKAGE	ED DEVICES	CHIP
TA	V _O (nom)	HEAT-SINK MOUNTED (KC)	PLASTIC FLANGE MOUNTED [†] (KTP)	FORM (Y)
	-5	μΑ79M05CKC	μΑ79M05CKTP	μΑ79M05Y
	-6	μΑ79М06СКС	μΑ79M06CKTP	μΑ79M06Y
	-8	µА79М08СКС	μΑ79M08CKTP	μΑ79M08Y
0°C to 125°C	-12	μΑ79M12CKC	μΑ79M12CKTP	μΑ79M12Y
	-15	μΑ79M15CKC	μΑ79M15CKTP	μΑ79M15Y
	-20	μΑ79M20CKC	μΑ79M20CKTP	μΑ79M20Y
	-24	μΑ79M24CKC	μΑ79M24CKTP	μΑ79M24Y


[†]The KTP package is also available in tape and reel.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

schematic



Resistor values shown are nominal and in Ω .

μΑ79MxxY chip information

This chip, when properly assembled, displays characteristics similar to the μ A79MxxC. Thermal compression or ultrasonic bonding can be used on the doped aluminum bonding pads. The chip can be mounted with conductive epoxy or a gold-silicon preform.

absolute maximum ratings over operating temperature range (unless otherwise noted)†

		μ Α79ΜxxC	UNIT
Innut voltage	μΑ79Μ20, μΑ79Μ24	-40	V
Input voltage	All others	-40 -35	V
Continuous total power dissipation (see Note 1)		See Dissipation Rating Tables	and 2
Operating free-air, TA, case, TC, or virtual junction, TJ, temperature range	9	0 to 150	°C
Storage temperature range, T _{stg}		-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds		260	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

DISSIPATION RATING TABLE 1-FREE-AIR TEMPERATURE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
KC	2000 mW	16.0 mW/°C	1280 mW	400 mW
KTP	1800 mW	14.5 mW/°C	11 47 mW	350 mW

DISSIPATION RATING TABLE 2-CASE TEMPERATURE

PACKAGE	T _C ≤ 120°C POWER RATING	DERATING FACTOR ABOVE T _C = 120°C	T _C = 125°C POWER RATING
KC	20000 mW	200.0 mW/°C	5000 mW
KTP	18000 mW	181.1 mW/°C	4365 mW

recommended operating conditions

		MIN	MAX	UNIT
	μΑ79M05C	-7	-25	
	μΑ79M06C	-8	-25	
Input voltage, V _I	μΑ79M08C	-10.5	-25	
	μΑ79M12C	-14.5	30	V
	μΑ79M15C	-17.5	-30	
	μΑ79M20C	-23	-35	
	μΑ79M24C	-27	-38	
Output current, IO				mA
Operating virtual junction temperature, TJ		0	125	°C

electrical characteristics at specified virtual junction temperature, $V_I = -10 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

DADAMETED	TEST CONDITIONST	μ А79М05С			UNIT
PARAMETER	TEST CONDITIONS!	MIN TYP -4.8 -5	MAX		
		-4.8	-5	-5.2	
Output voltage‡	$V_I = -7$ V to -25 V, $I_O = 5$ mA to 350 mA, $T_J = 0$ °C to 125°C	-4.75		-5.25	V
Input veltage regulation	$V_{ } = -7 \text{ V to } -25 \text{ V}$		7	50	mV
Input voltage regulation	$V_{ } = -8 \text{ V to } -18 \text{ V}$	-4.8 -5 A, -4.75 - 7 3 50 54 60 75 50 -0.4 125	30	111 V	
Ripple rejection	$V_{I} = -8 \text{ V to } -18 \text{ V}, $ $I_{O} = 100 \text{ mA}, $ $T_{J} = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	50			dB
	I _O = 300 mA	54	60		
Output voltage regulation	I _O = 5 mA to 500 mA		75	100	mV
	$I_O = 5$ mA to 350 mA		50		1110
Temperature coefficient of output voltage	$I_O = 5 \text{ mA},$ $T_J = 0^{\circ}\text{C to } 125^{\circ}\text{C}$		-0.4		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		125		μV
Dropout voltage			1.1		٧
Bias current			1	2	mA
Dies augent shares	$V_{I} = -8 \text{ V to } -18 \text{ V}, \qquad T_{J} = 0^{\circ}\text{C to } 125^{\circ}\text{C}$			0.4	A
Bias current change	$I_{O} = 5$ mA to 350 mA, $T_{J} = 0$ °C to 125°C			0.4	mA
Short-circuit output current	V _I = -30 V		140		mA
Peak output current			0.65		Α

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-µF capacitor across the input and a 1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, $V_I = -11~V$, $I_O = 350~mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

DADAMETED	TEGT 04	TEST CONDITIONST		μ А79М06С		
PARAMETER	TEST CC	TEST CONDITIONS			MAX	UNIT
			-5.75	-6	-6.25	
Output voltage‡	$V_I = -8 \text{ V to } -25 \text{ V},$ $T_J = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	$I_O = 5 \text{ mA to } 350 \text{ mA},$	-5.7		-6.3	V
lenut valtage regulation	$V_{I} = -8 \text{ V to } -25 \text{ V}$			7	60	mV
Input voltage regulation	$V_{I} = -9 \text{ V to } -19 \text{ V}$		50	40	'''V	
Ripple rejection	$V_{ } = -9 \text{ V to } -19 \text{ V},$ $f = 120 \text{ Hz}$	I _O = 100 mA, T _J = 0°C to 125°C	50			dB
	= 20 H2	$I_O = 300 \text{ mA}$	54	60		
Output valtage variation	$I_{O} = 5 \text{ mA to } 500 \text{ mA}$	I _O = 5 mA to 500 mA		80	120	
Output voltage regulation	$I_{O} = 5 \text{ mA to } 350 \text{ mA}$	ı		55		mV
Temperature coefficient of output voltage	I _O = 5 mA,	T _J = 0°C to 125°C		-0.4		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz			150		μV
Dropout voltage				1.1		٧
Bias current				1	2	mA
Di	$V_{I} = -9 \text{ V to } -25 \text{ V},$	T _J = 0°C to 125°C			0.4	Λ
Bias current change	$I_{O} = 5 \text{ mA to } 350 \text{ mA}$	I _O = 5 mA to 350 mA, T _J = 0°C to 125°C			0.4	mA
Short-circuit output current	V _I = −30 V			140		mA
Peak output current				0.65		Α

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-µF capacitor across the input and a 1-µF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = -19 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25 ^{\circ}\text{C}$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS†		μ	A79M08	С	UNIT	
PARAMETER	IEST CON	DITIONST	MIN	TYP	MAX	UNIT	
			-7.7	-8	-8.3		
Output voltage‡	$V_I = -10.5 \text{ V to } -25 \text{ V},$ $T_J = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	$I_O = 5$ mA to 350 mA,	-7.6		-8.4	V	
Input voltage regulation	$V_{I} = -10.5 \text{ V to } -25 \text{ V}$			8	80	mV	
Input voltage regulation	$V_{I} = -11 \text{ V to } -21 \text{ V}$		50		4	50	mv
Ripple rejection	$V_{\parallel} = -11.5 \text{ V to } -21.5 \text{ V},$ $f = 120 \text{ Hz}$	I _O = 100 mA, T _J = 0°C to 125°C	50			dB	
	T = 120 Hz	I _O = 300 mA	54	59			
Output voltage regulation	I _O = 5 mA to 500 mA			90	160	mV	
Culput voltage regulation	I _O = 5 mA to 350 mA			60		111 V	
Temperature coefficient of output voltage	$I_O = 5 \text{ mA},$	T _J = 0°C to 125°C		-0.6		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz			200		μV	
Dropout voltage	$I_O = 5 \text{ mA}$			1.1		V	
Bias current				1	2	mA	
Pine ourrent change	$V_{I} = -10.5 \text{ V to } -25 \text{ V},$	T _J = 0°C to 125°C			0.4	mA	
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	T _J = 0°C to 125°C			0.4	IIIA	
Short-circuit output current	V _I = −30 V			140		mA	
Peak output current			•	0.65	•	Α	

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-µF capacitor across the input and a 1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = -19 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

DADAMETED	TF0T 00	μ Α79M12C			UNIT	
PARAMETER	lesi co	NDITIONST	MIN TYP MAX -11.5 -12 -12.5	UNIT		
			-11.5	-12	-12.5	
Output voltage‡	$V_{I} = -14.5 \text{ V to } -30 \text{ V}$ $T_{J} = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	$_{10} = 5 \text{ mA to } 350 \text{ mA},$	-11.4		-12.6	V
Input voltage regulation	$V_{I} = -14.5 \text{ V to } -30 \text{ V}$			9	80	mV
Input voltage regulation	$V_{ } = -15 \text{ V to } -25 \text{ V}$		9 50 54 60 65 45 -0.8	50	IIIV	
Ripple rejection	$V_{\parallel} = -15V \text{ to } -25 \text{ V},$ $f = 120 \text{ Hz}$	I _O = 100 mA, T _J = 0°C to 125°C	50			dB
	T = 120 HZ	I _O = 300 mA	54	60		
Outrot valtage regulation	I _O = 5 mA to 500 mA			65	240	mV
Output voltage regulation	I _O = 5 mA to 350 mA			45		mv
Temperature coefficient of output voltage	$I_O = 5 \text{ mA},$	T _J = 0°C to 125°C		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz			300		μV
Dropout voltage				1.1		V
Bias current				1.5	3	mA
Diagramma de la caraca	$V_{I} = -14.5 \text{ V to } -30 \text{ V}$, Т _Ј = 0°C to 125°C			0.4	A
Bias current change	I _O = 5 mA to 350 mA, T _J = 0°C to 125°C				0.4	mA
Short-circuit output current	V _I = −30 V			140		mA
Peak output current				0.65		Α

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-µF capacitor across the input and a 1-µF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = -23 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25 ^{\circ}\text{C}$ (unless otherwise noted)

DADAMETED	TEST CON	TEST CONDITIONST		μ Α79M15C			
PARAMETER	TEST CON			TYP	MAX	UNIT	
			-14.4	-15	-15.6		
Output voltage‡	$V_I = -17.5 \text{ V to } -30 \text{ V},$ $T_J = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	I _O = 5 mA to 350 mA,	-14.25		-15.75	V	
Input voltage regulation	$V_{ } = -17.5 \text{ V to } -30 \text{ V}$			9	80		
Input voltage regulation	$V_{\parallel} = -18 \text{ V to } -28 \text{ V}$			7	50	mV	
Ripple rejection	$V_{\parallel} = -18.5 \text{ V to } -28.5 \text{ V},$ $f = 120 \text{ Hz}$	I _O = 100 mA, T _J = 0°C to 125°C	50			dB	
	T = 120 HZ	I _O = 300 mA	54	59			
Output valtage regulation	I _O = 5 mA to 500 mA	I _O = 5 mA to 500 mA		65	240	mV	
Output voltage regulation	$I_{O} = 5 \text{ mA to } 350 \text{ mA}$			45		1111	
Temperature coefficient of output voltage	I _O = 5 mA,	T _J = 0°C to 125°C		-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz			375		μV	
Dropout voltage	I _O = 5 mA			1.1		V	
Bias current				1.5	3	mA	
Dies august about	$V_{\parallel} = -17.5 \text{ V to } -30 \text{ V},$	T _J = 0°С to 125°С			0.4	A	
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	T _J = 0°C to 125°C			0.4	mA	
Short-circuit output current	V _I = −30 V			140		mA	
Peak output current				0.65		Α	

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = -29 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER	TEST CO	TEST CONDITIONS		μ Α79M20C		
PARAMETER	lesi cc	TEST CONDITIONS†			MAX	UNIT
			-19.2	-20	-20.8	
Output voltage [‡]	$V_{I} = -23 \text{ V to } -35 \text{ V},$ $T_{J} = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	$I_O = 5$ mA to 350 mA,	-19		-21	V
land the same was the land	$V_{ } = -23 \text{ V to } -38$	5 V		12	80	mV
Input voltage regulation	$V_{ } = -24 \text{ V to } -34 \text{ V}$			10	70	1 ^m v
Ripple rejection	$V_{\parallel} = -24 \text{ V to } -34 \text{ V},$ $f = 120 \text{ Hz}$	I _O = 100 mA, T _J = 0°C to 125°C	50			dB
	f = 120 Hz	I _O = 300 mA	54	58		1
O. da d Ha	I _O = 5 mA to 500 mA	I _O = 5 mA to 500 mA		75	300	
Output voltage regulation	$I_O = 5 \text{ mA to } 350 \text{ mA}$	I _O = 5 mA to 350 mA		50		m∨
Temperature coefficient of output voltage	I _O = 5 mA,	T _J = 0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz			500		μV
Dropout voltage				1.1		V
Bias current				1.5	3.5	mA
B:	$V_{\parallel} = -23 \text{ V to } -35 \text{ V},$	T _J = 0°C to 125°C			0.4	
Bias current change	I _O = 5 mA to 350 mA	I _O = 5 mA to 350 mA, T _J = 0°C to 125°C			0.4	mA
Short-circuit output current	V _I = −30 V			140		mA
Peak output current				0.65		Α

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

μΑ79M00 SERIES NEGATIVE-VOLTAGE REGULATORS

SLVS060C - JUNE 1976 - REVISED JANUARY 1997

electrical characteristics at specified virtual junction temperature, $V_I = -33 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25 ^{\circ}\text{C}$ (unless otherwise noted)

DADAMETED	TEST OF	TEST CONDITIONST		μ Α79M24C		
PARAMETER	TEST CC	ICHOITIUMS	MIN	TYP	MAX	UNIT
			-23	-24	-25	
Output voltage‡	$V_I = -27 \text{ V to } -38 \text{ V},$ $T_J = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	$I_O = 5$ mA to 350 mA,	-22.8		-25.2	V
land veltage vandation	$V_{I} = -27 \text{ V to } -38 \text{ V}$			12	80	
Input voltage regulation	$V_{I} = -28 \text{ V to } -38 \text{ V}$			12	70	mV
Ripple rejection	$V_{\parallel} = -28 \text{ V to } -38 \text{ V},$ $f = 120 \text{ Hz}$	I _O = 100 mA, T _J = 0°C to 125°C	50			dB
	T = 120 Hz	I _O = 300 mA	54	58		
Outrot valtage vandation	I _O = 5 mA to 500 mA	I _O = 5 mA to 500 mA		75	300	mV
Output voltage regulation	$I_O = 5 \text{ mA to } 350 \text{ mA}$	I _O = 5 mA to 350 mA		50		'''V
Temperature coefficient of output voltage	$I_O = 5 \text{ mA},$	T _J = 0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz			600		μV
Dropout voltage				1.1		٧
Bias current				1.5	3.5	mA
Diag august shares	$V_{ } = -27 \text{ V to } -38 \text{ V},$	T _J = 0°C to 125°C			0.4	^
Bias current change	$I_{O} = 5 \text{ mA to } 350 \text{ mA}$	I _O = 5 mA to 350 mA, T _J = 0°C to 125°C			0.4	mA
Short-circuit output current	V _I = -30 V			140		mA
Peak output current				0.65		Α

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-µF capacitor across the input and a 1-µF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = -10 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS†	μ Α79M05Y	UNIT
	TEST CONDITIONS!	MIN TYP MAX	UNII
Output voltage‡		-5	٧
lanut valta sa rasulation	$V_{ } = -7 \text{ V to } -25 \text{ V}$	7	m∨
Input voltage regulation	$V_{ } = -8 \text{ V to } -18 \text{ V}$	3] ""
Ripple rejection	$V_1 = -8 \text{ V to } -18 \text{ V}, \qquad I_0 = 300 \text{ mA}, \qquad f = 120 \text{ Hz}$	60	dB
Output voltage regulation	I _O = 5 mA to 500 mA	75	mV
	I _O = 5 mA to 350 mA	50	
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$	-0.4	mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	125	μV
Dropout voltage		1.1	٧
Bias current		1	mA
Short-circuit output current	V _I = −30 V	140	mA
Peak output current		0.65	Α

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-µF capacitor across the input and a 1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, $V_I = -11 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONST	μ Α79M06Y				
	TEST CONDITIONS!	MIN	TYP	MAX	UNIT	
Output voltage‡			-6		V	
land the second	V _I = -8 V to -25 V		7			
Input voltage regulation	$V_{ } = -9 \text{ V to } -19 \text{ V}$		3		mV	
Ripple rejection	$V_{I} = -9 \text{ V to } -19 \text{ V}, \qquad I_{O} = 300 \text{ mA}, \qquad f = 120 \text{ Hz}$		60		dB	
Output voltage regulation	I _O = 5 mA to 500 mA		80			
	I _O = 5 mA to 350 mA		55		mV	
Temperature coefficient of output voltage	I _O = 5 mA		-0.4		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz		150		μV	
Dropout voltage			1.1		V	
Bias current			1		mA	
Short-circuit output current	V _I = -30 V		140		mA	
Peak output current			0.65		Α	

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = -19 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25 ^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONST	μ Α79Μ08Υ			UNIT
		MIN	TYP	MAX	UNII
Output voltage‡			-8		٧
Input voltage regulation	$V_{ } = -10.5 \text{ V to } -25 \text{ V}$		8		mV
Input voltage regulation	$V_{ } = -11 \text{ V to } -21 \text{ V}$		4		1110
Ripple rejection	$V_I = -11.5 \text{ V to } -21.5 \text{ V}, I_O = 300 \text{ mA}, f = 120 \text{ Hz}$		59		dB
Output voltage regulation	I _O = 5 mA to 500 mA		90		mV
	I _O = 5 mA to 350 mA		60		
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$		-0.6		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		200		μV
Dropout voltage	I _O = 5 mA		1.1		٧
Bias current			1		mA
Short-circuit output current	V _I = −30 V		140		mA
Peak output current			0.65		Α

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, $V_I = -19 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25 ^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONST	μ Α79M12Y	LINUT
	TEST CONDITIONS!	MIN TYP MAX	UNIT
Output voltage‡		-12	V
Input valtage regulation	$V_{ } = -14.5 \text{ V to } -30 \text{ V}$	9	mv l
Input voltage regulation	$V_{ } = -15 \text{ V to } -25 \text{ V}$	5	ן ייי ן
Ripple rejection	$V_{\parallel} = -15V \text{ to } -25 \text{ V}, I_{\bigcirc} = 300 \text{ mA}, f = 120 \text{ Hz}$	60	dB
	I _O = 5 mA to 500 mA	65	l mv
Output voltage regulation	I _O = 5 mA to 350 mA	45	┐ ‴່
Temperature coefficient of output voltage	I _O = 5 mA	-0.8	mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	300	μV
Dropout voltage		1.1	V
Bias current		1.5	mA
Short-circuit output current	$V_{ } = -30 \text{ V}$	140	mA
Peak output current		0.65	Α

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = -23 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS†	μ Α79Μ	UNIT	
		MIN TYP	MAX	וואט
Output voltage‡		-1	5	٧
lanut valtaga ragulatian	$V_{\parallel} = -17.5 \text{ V to } -30 \text{ V}$	9	9	m∨
Input voltage regulation	$V_{\parallel} = -18 \text{ V to } -28 \text{ V}$	-	7] ""'
Ripple rejection	$V_1 = -18.5 \text{ V to } -28.5 \text{ V}, I_O = 300 \text{ mA}, f = 120 \text{ Hz}$	59)	dB
Output voltage regulation	I _O = 5 mA to 500 mA	6	5	mV
	I _O = 5 mA to 350 mA	4	5	
Temperature coefficient of output voltage	I _O = 5 mA			mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	37	5	μV
Dropout voltage	I _O = 5 mA	1.1		٧
Bias current		1.5	5	mA
Short-circuit output current	V _I = -30 V	140)	mA
Peak output current		0.6	5	Α

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-µF capacitor across the input and a 1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, $V_I = -29 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25 ^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONST	μ Α79M20Y			UNIT
		MIN	TYP	MAX	UNIT
Output voltage‡			-20		٧
lining the real responsibilities.	V _I = -23 V to -35 V		12		
Input voltage regulation	$V_1 = -24 \text{ V to } -34 \text{ V}$		10		mV
Ripple rejection	$V_1 = -24 \text{ V to } -34 \text{ V}, I_0 = 300 \text{ mA}, f = 120 \text{ Hz}$		58		dB
Output voltage regulation	I _O = 5 mA to 500 mA		75		mV
	I _O = 5 mA to 350 mA		50		
Temperature coefficient of output voltage	I _O = 5 mA		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		500		μV
Dropout voltage			1.1		٧
Bias current			1.5		mA
Short-circuit output current	V _I = -30 V		140		mA
Peak output current			0.65		Α

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

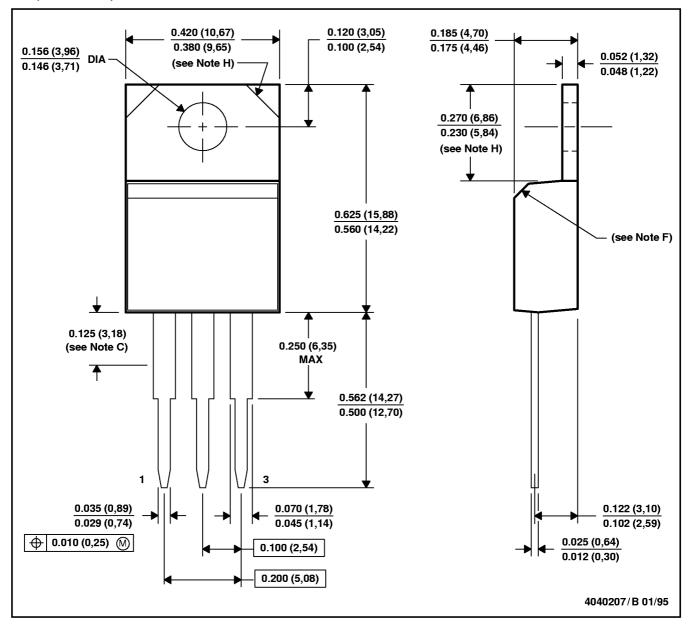
μΑ79M00 SERIES NEGATIVE-VOLTAGE REGULATORS

SLVS060C - JUNE 1976 - REVISED JANUARY 1997

electrical characteristics at specified virtual junction temperature, $V_I = -33 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25 ^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONST	μ Α79M24 \	UNIT	
		MIN TYP	MAX	UNIT
Output voltage‡		-24		V
loout valtage regulation	V _I = -27 V to -38 V	12		mV
Input voltage regulation	$V_{\parallel} = -28 \text{ V to } -38 \text{ V}$	12		1 ''''
Ripple rejection	$V_1 = -28 \text{ V to } -38 \text{ V}, I_O = 300 \text{ mA}, f = 120 \text{ Hz}$	58		dB
Output voltage regulation	I _O = 5 mA to 500 mA	75		mV
	I _O = 5 mA to 350 mA	50		
Temperature coefficient of output voltage	$I_O = 5 \text{ mA},$ $T_J = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	600		μV
Dropout voltage		1.1		٧
Bias current		1.5		mA
Short-circuit output current	V _I = -30 V	140		mA
Peak output current		0.65		Α

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-µF capacitor across the input and a 1-µF capacitor across the output.



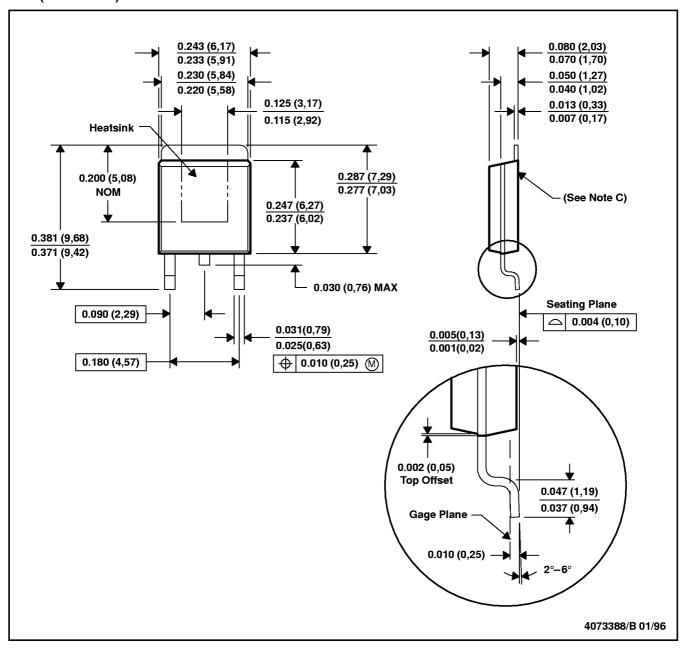
[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

MECHANICAL INFORMATION

KC (R-PSFM-T3)

PLASTIC FLANGE-MOUNT PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. Lead dimensions are not controlled within this area.
- D. All lead dimensions apply before solder dip.
- E. The center lead is in electrical contact with the mounting tab.
- F. The chamfer is optional.
- G. Falls within JEDEC TO-220AB
- H. Tab contour optional within these dimensions

MECHANICAL INFORMATION

KTP (R-PSFM-T3)

PLASTIC FLANGE-MOUNT PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. The heatsink area is approximately 28K sq mils.

