

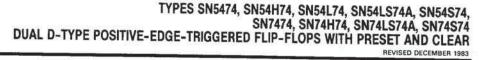
# SN5474, SN54H74, SN54L74, SN54LS74A, SN54S74 SN7474, SN74H74, SN74LS74A, SN74S74

Dual D-Type Positive-Edge-Triggered Flip-Flops with Preset and Clear

These devices contain two independent D-type positive-edge-triggered flip-flops. A low level at the preset or clear inputs sets or resets the outputs regardless of the levels of the other inputs. When preset and clear are inactive (high), data at the D input meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the D input may be changed without affecting the levels at the outputs.

# Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.


Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

# **Quality Overview**

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
  - Class Q Military
  - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
  - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

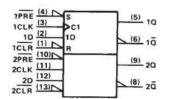


. Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

Dependable Texas Instruments Quality and Reliability

#### description

These devices contain two independent D-type positive-edge-triggered flip-flops. A low level at the preset or clear inputs sets or resets the outputs regardless of the levels of the other inputs. When preset and clear are inactive (high), data at the D input meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the D input may be changed without affecting the levels at the outputs.


The SN54' family is characterized for operation over the full military temperature range of - 55°C to 125°C. The SN74' family is characterized for operation from 0 °C to 70 °C.

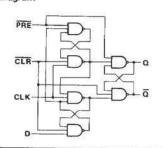
| FUNCTION T | ABLE |
|------------|------|
|------------|------|

|     | INPUT | INPUTS |   |    | UTS |
|-----|-------|--------|---|----|-----|
| PRE | CLR   | CLK    | D | a  | ā   |
| L   | н     | х      | х | н  | L   |
| н   | L     | ×      | x | L  | н   |
| L   | L     | ×      | × | нt | H   |
| н   | н     | 1      | н | н  | L   |
| н   | н     | 1      | L | L  | н   |
| н   | н     | L      | x | 00 | ã   |

<sup>†</sup> The output levels in this configuration are not guaranteed to meet the minimum levels in  $V_{OH}$  if the lows at preset and clear are near  $V_{1L}$  maximum. Furthermore, this configuration is nonstable; that is, it will not persist when either preset or clear returns to its inactive (high) level.

#### logic symbol




Pin numbers shown on logic notation are for D, J or N packages.

SN5474, SN54H74, SN54L74 ... J PACKAGE SN54LS74A, SN54S74 ... J OR W PACKAGE SN7474, SN74H74 ... J OR N PACKAGE SN74LS74A, SN74S74 ... D. J OR N PACKAGE (TOP VIEW) 1CLR D1 U14DVCC 13 2CLR 12 2D 1D02 1CLKD3 1PRE 4 11D2CLK 10 2PRE 1005 1006 9 20 8 20 GND 7 SN5474, SN54H74 ... W PACKAGE (TOP VIEW) 1CLKQ1 U 14 1 PRE 13010 12010 1002 1CLR C3 VccQ 11 GND 2CLR 5 10 20 2D 6 9 20 2CLK 7 8 2PRE SN54LS74A, SN54S74 ... FK PACKAGE SN74LS74A, SN74S74 ... FN PACKAGE (TOP VIEW) NC 1 20 19 1CLK 18 2D NCD 5 17 NC 1PRE 6 16 2CLK NCD7 1018 14 2PRE

NC - No internal connection

10 GNE 20 NC 20

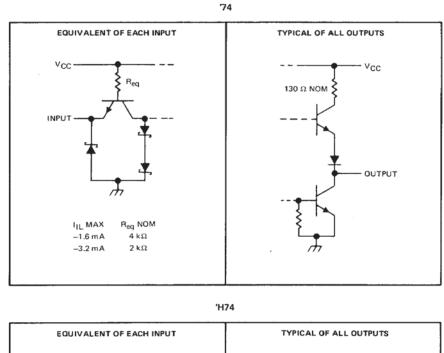
logic diagram



PRODUCTION DATA

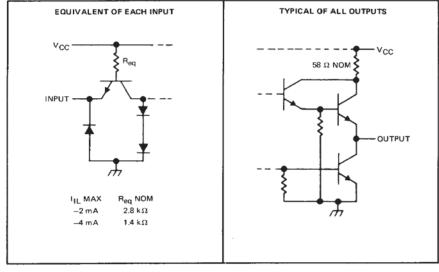
PRODUCTION DATA This document contains information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warrenty. Production processing does not necessarily include testing of all parameters.

U) TEXAS INSTRUMENTS POST OFFICE BOX 225012 . DALLAS, TEXAS 75265




3

*ITL DEVICES* 

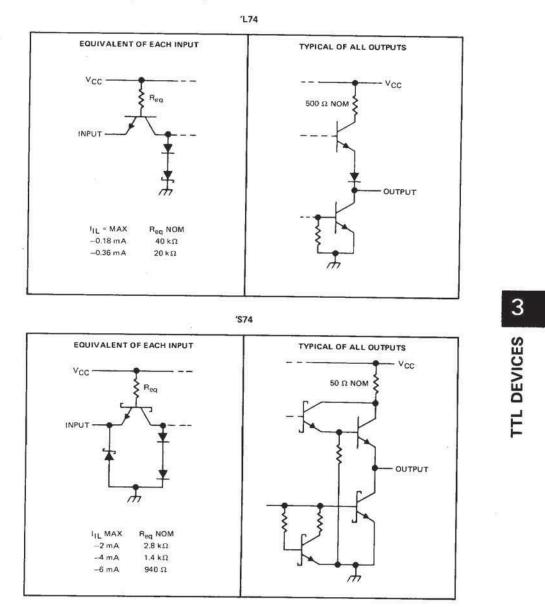

### TYPES SN5474, SN54H74, SN7474, SN74H74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

schematics of inputs and outputs



3 TTL

**TTL DEVICES** 






3-296

. . . . .

## TYPES SN54L74, SN54S74, SN74S74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR



schematics of inputs and outputs (continued)



0. 2000 11 12 10 10

1<del>00</del>253 — 181

### TYPES SN5474, SN54H74, SN54L74, SN54LS74A, SN54S74, SN7474, SN74H74, SN74LS74A, SN74S74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

schematic 'LS74A Vcc §16 kΩ 120 Ω ξ9kΩ **ξ16 k**Ω 39kΩ ş 120Ω V 5 ō ko r. 1 k!0 \$1.7 kΩ 1.7 kn 2 3.3 kn 2 3.3 kn CLR PRE  $\forall$  $\forall$ 16 kΩ \$ **ξ**16 kΩ 3 1 **ξ18 k**Ω V Г **TTL DEVICES** 36 kΩ CLK V \$31 kΩ D - GND the

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Input voltage: '74, 'H74, 'L74, 'S74  | 5.5 V             |
|---------------------------------------|-------------------|
|                                       |                   |
| Operating free-air temperature range: | SN54'             |
|                                       | SN74' 0°C to 70°C |
| Storage temperature range             |                   |

NOTE 1: Voltage values are with respect to network ground terminal.



-----

## **TYPES \$N5474, SN7474** DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

| recommended | operating conditions   |
|-------------|------------------------|
|             | -per uning contantions |

|     |                                  |                | -    | SN5474  |                | SN7474 |            |       |      |
|-----|----------------------------------|----------------|------|---------|----------------|--------|------------|-------|------|
|     |                                  |                | MIN  | NOM     | MAX            | MIN    | NOM        | MAX   | UNIT |
| Vcc | Supply voltage                   |                | 4.5  | 5       | 5.5            | 4.75   | 5          | 5.25  | V    |
| VIH | High-level input voltage         |                |      | - 224   |                | 2      |            | S     | V    |
| VIL | Low-level input voltage          |                |      |         | 0.8            |        | 102        | 0.8   | V    |
| IOH | High-level output current        |                |      |         | - 0.4          |        | 21116-3-24 | - 0.4 | mA   |
| IOL | Low-level output current         |                |      |         | 16             |        |            | 16    | mA   |
|     |                                  | CLK high       | 30   |         | 1              | 30     | 10000      |       |      |
| tw  | Pulse duration                   | CLK low        | 37   | 38-0.82 |                | 37     |            |       | ns   |
|     |                                  | PRE or CLR low | 30   | ano -   | and the second | 30     |            |       | 0008 |
| tsu | Input setup time before CLK t    |                | 20   |         |                | 20     | 17.22      |       | ns   |
| th  | Input hold time-data after CLK 1 |                | 5    |         |                | 5      |            |       | ns   |
| TA  | Operating free-air temperature   |                | - 55 |         | 125            | 0      |            | 70    | °c   |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PA   | RAMETER   |                                                      | EST CONDITION          | uet                      |       | SN5474 |       |                  | SN7474 |       |      |
|------|-----------|------------------------------------------------------|------------------------|--------------------------|-------|--------|-------|------------------|--------|-------|------|
|      |           | TEST CONDITIONS.                                     |                        | MIN                      | TYP#  | MAX    | MIN   | TYP <sup>‡</sup> | MAX    | UNIT  |      |
| VIK  |           | V <sub>CC</sub> = MIN,                               | lţ = - 12 mA           |                          |       |        | - 1.5 |                  |        | - 1.5 | V    |
| VOH  |           | V <sub>CC</sub> = MIN,<br>I <sub>OH</sub> = - 0.4 mA | V <sub>IH</sub> = 2 V, | V <sub>IL</sub> = 0.8 V, | 2.4   | 3.4    |       | 2.4              | 3.4    |       | v    |
| VOL  |           | V <sub>CC</sub> = MIN,<br>I <sub>OL</sub> = 16 mA    | V <sub>IH</sub> = 2 V, | V <sub>IL</sub> ≈ 0.8 V, |       | 0.2    | 0.4   |                  | 0.2    | 0.4   | v    |
| lj – |           | V <sub>CC</sub> = MAX,                               | VI = 5.5 V             |                          |       |        | 1     |                  |        | 1     | mA   |
|      | D         |                                                      |                        | 116                      |       |        | 40    |                  |        | 40    |      |
| ЧH   | CLR       | CLR VCC = MAX,                                       | V1 = 2.4 V             |                          |       |        | 120   | 1                |        | 120   | mA   |
|      | All Other | VCC-WAA,                                             | V] - 2.4 V             |                          |       |        | 80    |                  |        | 80    | 1    |
|      | D         |                                                      |                        |                          |       |        | - 1.6 | 1                |        | - 1.6 |      |
| 13   | PRE*      | V <sub>CC</sub> = MAX,                               | V1 = 0.4 V             |                          |       |        | - 1.6 |                  |        | - 1.6 | 1 37 |
| ΊL   | L CLR*    |                                                      | V] = 0.4 V             |                          | - 3.2 |        | - 3.2 |                  |        | - 3.2 | mA   |
|      | CLK       |                                                      |                        |                          |       |        | - 3.2 |                  |        | - 3.2 |      |
| los§ |           | V <sub>CC</sub> = MAX                                |                        |                          | - 20  |        | - 57  | - 18             |        | - 57  | mA   |
| lcc  |           | V <sub>CC</sub> = MAX,                               | See Note 2             |                          | -     | 8.5    | 15    |                  | 8.5    | 15    | mA   |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
<sup>‡</sup> All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C,
\* Clear is tested with preset high and preset is tested with clear high.
<sup>§</sup> Not more than one output should be shorted at a time.
NOTE 2: With all outputs open, I<sub>CC</sub> is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is arounded. grounded.

#### switching charateristics, VCC = 5 V, TA = 25°C (see note 3)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | TEST CONDITIONS                                | MIN | түр | мах | UNIT |
|------------------|-----------------|----------------|------------------------------------------------|-----|-----|-----|------|
| f <sub>max</sub> |                 |                |                                                | 15  | 25  | 1   | MHz  |
| TPLH             | PRE or CLR      | Qorā           |                                                |     |     | 25  | ns   |
| TPHL             | THE OF CEN      | 2012           | R <sub>L</sub> = 400 Ω, C <sub>L</sub> = 15 pF |     |     | 40  | ns   |
| TPLH             | CLK             | CLK Q or ā     |                                                |     | 14  | 25  | ns   |
| TPHL             | CER Q OF Q      |                |                                                |     | 20  | 40  | ns   |

NOTE 3: See General Information Section for load circuits and voltage waveforms.



### TYPES SN54H74, SN74H74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

## recommended operating conditions

|     |                                |                 | SN54H74 |     |                                          | SN74H74 |     |      |      |
|-----|--------------------------------|-----------------|---------|-----|------------------------------------------|---------|-----|------|------|
|     |                                |                 | MIN     | NOM | MAX                                      | MIN     | NOM | MAX  | UNIT |
| Vcc | Supply voltage                 |                 | 4.5     | 5   | 5.5                                      | 4.75    | 5   | 5.25 | V    |
| VIH | High-level input voltage       |                 |         |     | -                                        | 2       |     |      | V    |
| VIL | Low-level input voltage        |                 |         | -   | 0.8                                      | -       |     | 0.8  | v    |
| IOH | High-level output current      |                 |         |     | - 1                                      | -       | *   | - 1  | mA   |
| IOL | Low-level output current       |                 |         |     | 20                                       |         |     | 20   | mA   |
|     |                                | CLK high        | 15      | -   | 11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 15      | 0   |      |      |
| tw  | Pulse duration                 | CLK low         | 13.5    |     | dimensi-                                 | 13.5    |     |      | ns   |
|     |                                | CLR or PRE low  | 25      |     |                                          | 25      |     |      |      |
| tsu | Setup time-before CLK t        | High-level data | 10      |     |                                          | 10      | 10  |      |      |
| su  | Low-level data                 |                 | 15      |     |                                          | 15      |     |      | ns   |
| th  | Hold time - data after CLK f   |                 | 5       |     |                                          | 5       | _   |      | ns   |
| TA  | Operating free-air temperature |                 | - 55    |     | 125                                      | D       |     | 70   | °C   |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| 9 |
|---|
| - |
| 7 |
| D |
|   |
| 5 |
| m |
| 5 |

| PA                     | RAMETER    | т                                                  | EST CONDITIC                    | taur                     |               | SN54H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4             |               |                  |       |        |     |  |  |    |    |
|------------------------|------------|----------------------------------------------------|---------------------------------|--------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|------------------|-------|--------|-----|--|--|----|----|
| 9.3000.90092453.000.00 |            | TEST CONDITIONS.                                   |                                 |                          | MIN           | TYP <sup>‡</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAX           | MIN           | TYP <sup>‡</sup> | MAX   | UNIT   |     |  |  |    |    |
| VIK                    |            | VCC = MIN,                                         | II = - 8 mA                     |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 1.5         |               |                  | - 1.5 | V      |     |  |  |    |    |
| ∨он                    | Sec. 1     | V <sub>CC</sub> = MIN,<br>I <sub>OH</sub> = - 1 mA | 2016-614 (C 1101-8100-810)      | V <sub>IL</sub> = 0.8 V, | 2.4           | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 2.4           | 3.4              |       | v      |     |  |  |    |    |
| VOL                    |            | V <sub>CC</sub> = MIN,<br>I <sub>OL</sub> = 20 mA  | V <sub>IH</sub> = 2 V,          | V <sub>IL</sub> = 0.8 V, |               | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4           |               | 0.2              | 0.4   | v      |     |  |  |    |    |
| 4                      |            | V <sub>CC</sub> = MAX,                             | V <sub>I</sub> = 5.5 V          |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1             |               |                  | 1     | mA     |     |  |  |    |    |
|                        | D          | 1                                                  |                                 |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50            |               |                  | 50    | 1200.3 |     |  |  |    |    |
|                        | CLR        | V <sub>CC</sub> = MAX, V <sub>1</sub> = 2.4 V      |                                 | 150                      |               | and the second sec |               |               | μA               |       |        |     |  |  |    |    |
|                        | PRE or CLK |                                                    | <ul> <li>description</li> </ul> |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |               |                  | pro-  |        |     |  |  |    |    |
|                        | D          |                                                    |                                 |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2            |               |                  | - 2   |        |     |  |  |    |    |
|                        | CLR*       |                                                    |                                 |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4            | -             | -                | -4    |        |     |  |  |    |    |
| IL                     | PRE*       | V <sub>CC</sub> = MAX,                             | $V_{1} = 0.4 V$                 | $v_1 = 0.4 V$            | $v_1 = 0.4 V$ | $v_1 = 0.4 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $v_1 = 0.4 V$ | $v_1 = 0.4 V$ | 2                | 1 100 |        | - 2 |  |  | -2 | mA |
|                        | CLK        |                                                    |                                 | <i>.</i> *               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 4           |               |                  | -4    |        |     |  |  |    |    |
| OS §                   |            | V <sub>CC</sub> = MAX                              |                                 |                          | - 40          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 100         | - 40          |                  | - 100 | mA     |     |  |  |    |    |
| cc                     |            | VCC = MAX.                                         | See Note 2                      |                          |               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21            |               | 15               | 25    | mA     |     |  |  |    |    |

T For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. T All typical values are at  $V_{CC} = 5 V$ ,  $T_A = 25^{\circ} C$ . S Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second. \* Clear is tested with preset high and preset is tested with clear high. NOTE 2: With all outputs open, I<sub>CC</sub> is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is arounded

#### switching characteristics, V<sub>CC</sub> = 5 V, T<sub>A</sub> = $25^{\circ}$ C (see note 3)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | TEST CONDITIONS        | MIN | түр  | мах | UNIT |
|------------------|-----------------|----------------|------------------------|-----|------|-----|------|
| fmax             |                 |                |                        | 35  | 43   |     | MHz  |
| <b>TPLH</b>      | PRE or CLR      |                |                        |     | 11.5 | 20  | ns   |
| 1PHL             | PREOFCLR        | uoru           | RL = 280 Ω, CL = 25 pF |     |      | 30  | ns   |
| <sup>t</sup> PLH | CLK             | Q or Q         |                        |     | 8.5  | 15  | ns   |
| TPHL             | CEN             | 4014           |                        |     | 13   | 20  | ns   |

NOTE 3: See General Information Section for load circuits and voltage waveforms.



3-300

يورد المرتقعين بالم

# TYPE SN54L74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

#### recommended operating conditions

|                 |                                |                                                                                                                 | MIN  | NOM      | MAX   | UNIT |
|-----------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|------|----------|-------|------|
| Vcc             | Supply voltage                 |                                                                                                                 | 4.5  | 5        | 5.5   | V    |
| VIH             | High-level input voltage       |                                                                                                                 | 2    |          |       | V    |
| VIL             | Low-level input voltage        |                                                                                                                 |      |          | 0.7   | v    |
| IOH             | High-level output current      |                                                                                                                 |      | 231      | - 0.1 | mA   |
| IOL             | Low-level output current       |                                                                                                                 |      |          | 2     | mA   |
| tw              | Pulse duration                 | CLK high or low                                                                                                 | 200  |          | 100   |      |
| w               | T dise duration                | CLR or PRE low                                                                                                  | 100  |          |       | ns   |
| t <sub>su</sub> | Setup time before CLK f        | in the second | 50   |          |       | ns   |
| th              | Hold time data after CLK †     |                                                                                                                 | 15   |          |       | ns   |
| TA              | Operating free-air temperature |                                                                                                                 | - 55 | 21 1 2 2 | 125   | °C   |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| P               | ARAMETER   | 1975                   | TE                     | ST CONDITIONS <sup>†</sup> |             | MIN T | PI MAX  | UNIT    |
|-----------------|------------|------------------------|------------------------|----------------------------|-------------|-------|---------|---------|
| VOH             |            | V <sub>CC</sub> = MIN, | VIH = 2 V,             | VIL = 0.7 V,               | OH = 0.1 mA | 2.4   | 3.3     | V       |
| VOL             |            | V <sub>CC</sub> = MIN, | VIH = 2 V,             | V <sub>1L</sub> = 0.7 V,   | IOL = 2 mA  |       | .15 0.3 | V       |
| 1111            | D          |                        |                        |                            |             |       | 0.1     | 1       |
| \$ <sub>1</sub> | CLR        | VCC = MAX,             | V1 = 5.5 V             |                            |             |       | 0.3     | mA      |
|                 | PRE or CLK |                        |                        |                            |             |       |         | 1       |
|                 | D          |                        |                        | 198                        |             |       | 0.2     | 10-02-1 |
| Чн              | CLR        | VCC = MAX.             | V <sub>1</sub> = 2.4 V |                            |             | μA    |         |         |
|                 | PRE or CLK |                        |                        |                            |             | 1     | 30      | per     |
| 50 C            | D or PRE   | 0.00                   | 223 (1772)             | 8                          |             |       | - 0.18  | -       |
| μL              | CLR or CLK | V <sub>CC</sub> = MAX, | V1 = 0.3 V             |                            |             |       | - 0.36  | μA      |
| los             |            | V <sub>CC</sub> = MAX  |                        |                            |             | -3    | - 15    | mA      |
| lcc             |            | V <sub>CC</sub> = MAX, | See Note 2             |                            |             |       | 0.8 1.5 | mA      |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. <sup>‡</sup> All typical values are at  $V_{CC}$  = 5 V,  $T_A$  = 25°C. NOTE 2: With all outputs open, I<sub>CC</sub> is measured with the Q and  $\overline{Q}$  outputs high in turn. At the time of measurement, the clock input is grounded.

## switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$ (see note 3)

| PARAMETER        | FROM<br>(INPUT)                                                                     | TO<br>(OUTPUT) | TEST COND           | MIN           | түр   | мах | UNIT |     |
|------------------|-------------------------------------------------------------------------------------|----------------|---------------------|---------------|-------|-----|------|-----|
| fmax             |                                                                                     |                |                     |               | 2.5   | 3   |      | MHz |
| <b>tPLH</b>      | PRE or CLR                                                                          | QorQ           |                     |               |       | 50  | 75   | ns  |
|                  | PRE or CLR (CLK high)           PRE or CLR (CLK low)           PRE or CLR (CLK low) | ā or Q         |                     | 80            | 80    | 150 |      |     |
| TPHL             |                                                                                     |                | $R_L = 4 k\Omega$ , | $C_L = 50 pF$ |       | 80  | 150  | ns  |
| <sup>T</sup> PLH |                                                                                     | QorQ           |                     |               | 15 65 |     | 100  | ns  |
| TPHL Clock       | U or Q                                                                              |                |                     | 15            | 65    | 150 | ns   |     |

•

NOTE 3: See General Information Section for load circuits and voltage waveforms.



TTL DEVICES



#### TYPES SN54LS74A, SN74LS74A DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

#### recommended operating conditions

|        |                                |                 | SN54LS74A |         |      | SN74LS74A |      |          | 12001022 |
|--------|--------------------------------|-----------------|-----------|---------|------|-----------|------|----------|----------|
|        |                                |                 | MIN       | NOM     | MAX  | MIN       | NOM  | MAX      | UNIT     |
| Vcc    | Supply voltage                 |                 | 4.5       | 5       | 5.5  | 4.75      | 5    | 5.25     | V        |
| VIH    | High-level input voltage       |                 | 2         |         |      | 2         |      | 2        | V        |
| VIL    | Low-level input voltage        |                 |           |         | 0.7  |           | 1000 | 0.8      | V        |
| юн     | High-level output current      |                 |           |         | -0.4 |           |      | -0.4     | mA       |
| OL     | Low-level output current       |                 |           | Č.      | 4    |           |      | 8        | mA       |
| fclock | Clock frequency                |                 | 0         |         | 25   | 0         | -    | 25       | MHz      |
|        | Pulse duration                 | CLK high        | 25        |         |      | 25        |      |          |          |
| tw     | Fuise duration                 | PRE or CLR low  | 25        |         | -    | 25        | 10   | 11       | ns       |
| tsu    | Setup time-before CLK t        | High-level data | 20        | - 1900C |      | 20        |      | 24440440 |          |
| su     | Low-level data                 |                 | 20        |         |      | 20        |      |          | ns       |
| th     | Hold time-data after CLK 1     |                 | 5         | 1111    |      | 5         |      | 1023     | ns       |
| TA     | Operating free-air temperature | 2000            | - 55      |         | 125  | 0         | 1-01 | 70       | °c       |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| P               | ARAMETER   | TEC                                                  | T CONDITIONS           |                        | S     | N54LS7           | 4A    | S    | N74LS7 | 4A    |                |
|-----------------|------------|------------------------------------------------------|------------------------|------------------------|-------|------------------|-------|------|--------|-------|----------------|
|                 | ANAMETEN   | TEST CONDITIONS'                                     |                        |                        | MIN   | TYP <sup>‡</sup> | MAX   | MIN  | TYP\$  | MAX   | UNIT           |
| VIK             |            | V <sub>CC</sub> = MIN,                               | lj = - 18 mA           |                        | T     |                  | - 1.5 |      |        | - 1.5 | V              |
| v <sub>он</sub> |            | V <sub>CC</sub> = MIN,<br>I <sub>OH</sub> = - 0.4 mA | V <sub>IH</sub> = 2 V, | VIL - MAX,             | 2.5   | 3.4              |       | 2.7  | 3.4    |       | v              |
| VOL             |            | V <sub>CC</sub> = MIN,<br>I <sub>OL</sub> = 4 mA     | VIL = MAX,             | V <sub>IH</sub> = 2 V, |       | 0.25             | 0.4   |      | 0.25   | 0.4   |                |
|                 |            | V <sub>CC</sub> = MIN,<br>I <sub>OL</sub> = 8 mA     | V <sub>IL</sub> = MAX, | IL = MAX, VIH = 2 V,   |       |                  |       |      | 0.35   | 0.5   | v              |
| h               | D or CLK   | VCC = MAX,                                           | = MAX, VI = 7 V        |                        | 1     | 07.55            | 0.1   | 1.21 |        | 0.1   | 1.000          |
| "               | CLR or PRE | VCC - MAA,                                           | v1 - 3 v               |                        |       |                  | 0.2   |      | 0.2    | 0.2   | mA             |
| Inc             | D or CLK   | Vcc = MAX,                                           | V 2 7 V                |                        | 1     | 9765             | 20    | -    |        | 20    |                |
| чн              | CLR or PRE | VCC - MAA,                                           | V1 - 2.7 V             |                        | 40    |                  | 40    | 40   |        |       | μA             |
| IIL D or CLK    |            | Ver a MAX                                            | N - 0 4 M              |                        |       | - 0.4            |       | -0.4 |        |       | Content of the |
|                 |            | V <sub>CC</sub> = MAX, V <sub>I</sub> = 0.4 V        |                        |                        | - 0.8 |                  | - 0.8 |      |        | mA    |                |
| loss            |            | V <sub>CC</sub> = MAX,                               | See Note 4             |                        | - 20  |                  | - 100 | 20   |        | - 100 | mA             |
| lcc             |            | V <sub>CC</sub> = MAX,                               | See Note 2             |                        |       | 4                | 8     |      | 4      | 8     | mA             |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommanded operating conditions. <sup>‡</sup> All typical values are at  $V_{CC} = 5 V$ ,  $T_A = 25^{\circ}C$ . § Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second. NOTE 2: With all outputs open,  $I_{CC}$  is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is arounded

NOTE 2: With all outputs open, I<sub>CC</sub> is measured with the Q and Q datasets high a state of the state of the

#### switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$ (see note 3)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | TEST CONDITIONS     |            | MIN | түр | мах | UNIT |
|------------------|-----------------|----------------|---------------------|------------|-----|-----|-----|------|
| f <sub>max</sub> |                 |                |                     |            | 25  | 33  |     | MHz  |
| TPLH             | CLR, PRE or CLK | QorQ           | $R_L = 2 k\Omega$ , | CL = 15 pF |     | 13  | 25  | MHz  |
| TPHL             | ULN, PHE OF ULK | QOFQ           |                     |            |     | 25  | 40  | ns   |

NOTE 3: See General Information Section for load circuits and voltage waveforms.



3-302

3

**TTL DEVICES** 

# **TYPES SN54S74, SN74S74** DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

#### recommended operating conditions

| _              |                                         |                 | SN54S74 |       |        | SN74S74 |      |      |      |  |
|----------------|-----------------------------------------|-----------------|---------|-------|--------|---------|------|------|------|--|
|                |                                         |                 | MIN     | NOM   | MAX    | MIN     | NOM  | MAX  | UNIT |  |
| Vcc            | Supply voltage                          |                 | 4.5     | 5     | 5.5    | 4.75    | 5    | 5.25 | V    |  |
| VIH            | High-level input voltage                |                 | 2       |       |        | 2       |      |      | V    |  |
| VIL            | Low-level input voltage                 |                 |         | -     | 0.8    |         |      | 0.8  | V    |  |
| ОН             | High-level output current               |                 |         |       | - 1    |         |      | - 1  | mA   |  |
| OL             | Low-level output current                |                 |         |       | 20     |         |      | 20   | mA   |  |
| 01             |                                         | CLK high        | 6       |       |        | 6       |      |      |      |  |
| tw             | Pulse duration                          | CLK low         | 7.3     |       |        | 7.3     | 1025 |      | ns   |  |
|                |                                         | CLR or PRE low  | 7       |       | 015015 | 7       |      |      |      |  |
|                | S Sections                              | High-level data | 3       | 201 C |        | 3       |      |      | ns   |  |
| tsu            | Setup time, before CLK f Low-level data |                 | 3       |       | 7.8    | 3       | -    |      | 1.5  |  |
| <sup>t</sup> h | Input hold time - data after CLK †      |                 | 2       |       |        | 2       | -    |      | ns   |  |
| TA             | Operating free-air temperature          |                 | - 55    |       | 125    | 0       | 0.55 | 70   | °C   |  |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| 0.000     |            |                                                   |                                               |            | SN54S74             |         | SN74S74 |       |      |  |
|-----------|------------|---------------------------------------------------|-----------------------------------------------|------------|---------------------|---------|---------|-------|------|--|
| PARAMETER |            | TEST CONDITIONS <sup>†</sup>                      |                                               | MIN        | TYP <sup>‡</sup> MA | X MIN   | түр‡    | MAX   | UNIT |  |
| VIK       |            | V <sub>CC</sub> = MIN,                            | II = - 18 mA,                                 |            | - 1                 | .2      |         | - 1.2 | V    |  |
| Voн       |            | V <sub>CC</sub> = MIN,<br>I <sub>OH</sub> = -1 mA | V <sub>IH</sub> = 2 V, V <sub>IL</sub> =      | 0.8 V, 2.5 | 3.4                 | 2.7     | 3.4     |       | v    |  |
| VOL       |            | V <sub>CC</sub> = MIN,<br>I <sub>OL</sub> = 20 mA | V <sub>IH</sub> = 2 V, V <sub>IL</sub> =      | 0.8 V.     | 0                   | .5      |         | 0.5   | v    |  |
| 4         |            | VCC = MAX,                                        | V <sub>1</sub> = 5.5 V                        |            |                     | 1       |         | 1     | mA   |  |
|           | D          |                                                   |                                               |            |                     | 50      |         | 50    | mA   |  |
| чн        | CLR        | Vcc = MAX,                                        | V <sub>CC</sub> = MAX, V <sub>1</sub> = 2.7 V |            | 1                   | 50      |         |       |      |  |
| 111       | PRE or CLK | - CC                                              |                                               |            | 100                 |         |         |       |      |  |
|           | D          |                                                   |                                               |            | - 2                 |         | 2 - 2   |       |      |  |
|           | CLR*       |                                                   | 101 23232                                     |            | - 6<br>- 4<br>- 4   |         | - 4     |       |      |  |
| ηL        | PRE*       | V <sub>CC</sub> = MAX,                            | VI = 0.5 V                                    | 0          |                     |         |         |       |      |  |
|           | CLK        |                                                   |                                               |            |                     |         |         |       |      |  |
| los§      | 102.0      | Vcc = MAX                                         |                                               | - 40       | - 1                 | 00 - 40 | )       | - 100 | mA   |  |
| ICC       |            | VCC = MAX,                                        | See Note 2                                    |            | 15                  | 25      | 15      | 25    | mA   |  |

<sup>1</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 <sup>1</sup> All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C.
 <sup>2</sup> Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
 <sup>3</sup> Clear is tested with preset high and preset is tested with clear high.
 NOTE 2: All outputs open, I<sub>CC</sub> is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is grounded.

## switching characteristics, V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25 $^{\circ}$ C (see note 3)

| PARAMETER | TER FROM TO TEST CONDITIONS |        | MIN                                | TYP   | мах | UNIT |     |
|-----------|-----------------------------|--------|------------------------------------|-------|-----|------|-----|
| fmax      | 16.2                        |        |                                    | 75    | 110 |      | MHz |
| IPLH      | PRE or CLR                  | QorQ   |                                    |       | 4   | 6    | ns  |
|           | PRE or CLR (CLK high)       |        |                                    | r . r | 9   | 13.5 | ns  |
| TPHL      | PRE or CLR (CLK low)        | Q or Q | $R_{L} = 280 \Omega$ , $C_{L} = 1$ | 5 pF  | 5   | 8    | 115 |
|           |                             |        |                                    |       | 6   | 9    | ns  |
|           | CLK                         | QorQ   |                                    |       | 6   | 9    | ns  |

NOTE 3: See General Information Section for load circuits and voltage waveforms.



······