

SCAN18541T

Non-Inverting Line Driver with TRI-STATE Outputs

The SCAN18541T is a high speed, low-power line driver featuring separate data inputs organized into dual 9-bit bytes with byte-oriented paired output enable control signals. This device is compliant with IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture with the incorporation of the defined boundary-scan test logic and test access port consisting of Test Data Input (TDI), Test Data Out (TDO), Test Mode Select (TMS) and Test Clock (TCK).

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

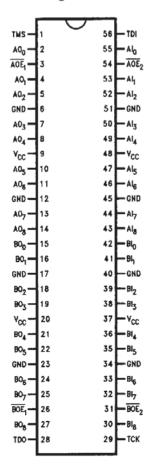
- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SCAN18541T Non-Inverting Line Driver with TRI-STATE® Outputs

General Description


The SCAN18541T is a high speed, low-power line driver featuring separate data inputs organized into dual 9-bit bytes with byte-oriented paired output enable control signals. This device is compliant with IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture with the incorporation of the defined boundary-scan test logic and test access port consisting of Test Data Input (TDI), Test Data Out (TDO), Test Mode Select (TMS), and Test Clock (TCK).

Features

- IEEE 1149.1 (JTAG) Compliant
- Dual output enable signals per byte
- TRI-STATE outputs for bus-oriented applications
- 9-bit data busses for parity applications
- Reduced-swing outputs source 32 mA/sink 64 mA (Comm), source 24 mA/sink 48 mA (Mil)
- Guaranteed to drive 50Ω transmission line to TTL input levels of 0.8V and 2.0V
- TTL compatible inputs
- 25 mil pitch SSOP (Shrink Small Outline Package)
- Includes CLAMP and HIGHZ instructions
- Member of National's SCAN Products

Ordering Code: See Section 11

Connection Diagram

Pin Names

Pin Names	Description
AI ₍₀₋₈₎	Input Pins, A Side
BI ₍₀₋₈₎	Input Pins, B Side
AOE1, AOE2	TRI-STATE Output Enable Input Pins, A Side
BOE ₁ , BOE ₂	TRI-STATE Output Enable Input Pins, B Side
	Output Pins, A Side
AO ₍₀₋₈₎	Output Pins, B Side

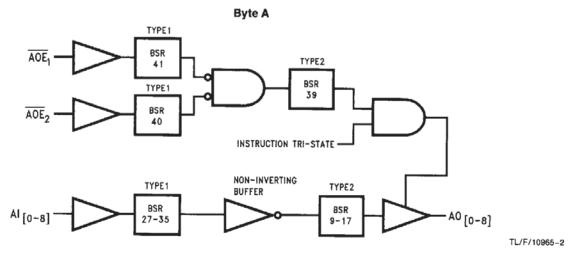
Truth Tables

	Input	3	AO (0-8)
AOE ₁	AOE ₂	Ai (0-8)	7.5 (6 0)
L	L	Н	Н
H	X	X	Z
X	Н	X	Z
L	L	L	L

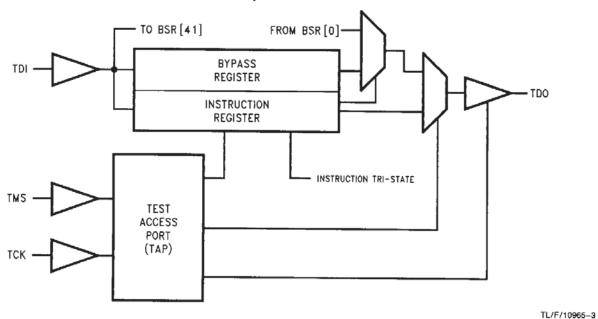
	Input	3	BO (0-8)			
BOE ₁	BOE ₂	BI (0-8)	20 (0 0)			
L	L	Н	Н			
Н	Х	Х	Z			
X	Н	X	Z			
L	L	L	L			

H = HIGH Voltage Level

L = LOW Voltage Level


X = Immaterial

Z = High Impedance


Order Number	Description
SCAN18541TSSC	SSOP in Tubes
SCAN18541TSSCX	SSOP in Tape and Reel
SCAN18541TFMQB	Flatpak Military
5962-9311601MXA	Military SMD#

TL/F/10965-1

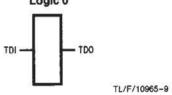
Block Diagrams

Tap Controller

Byte B NON-INVERTING TYPE1 TYPE2 BUFFER BSR BSR ·BO [0-8] 18-26 TYPE 1 INSTRUCTION TRI-STATE BSR TYPE2 38 BSR TYPE 1 36 BSR 37

Note: BSR stands for Boundary Scan Register.

TL/F/10965-4


Description of Boundary-Scan Circuitry

The scan cells used in the BOUNDARY-SCAN register are one of the following two types depending upon their location. Scan cell TYPE1 is intended to solely observe system data, while TYPE2 has the additional ability to control system data. (See IEEE Standard 1149.1 Figure 10–11 for a further description of scan cell TYPE1 and Figure 10–12 for a further description of scan cell TYPE2.)

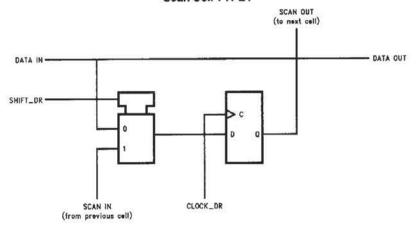
Scan cell TYPE1 is located on each system input pin while scan cell TYPE2 is located at each system output pin as well as at each of the two internal active-high output enable signals. AOE controls the activity of the A-outputs while BOE controls the activity of the B-outputs. Each will activate their respective outputs by loading a logic high.

The BYPASS register is a single bit shift register stage identical to scan cell TYPE1. It captures a fixed logic low.

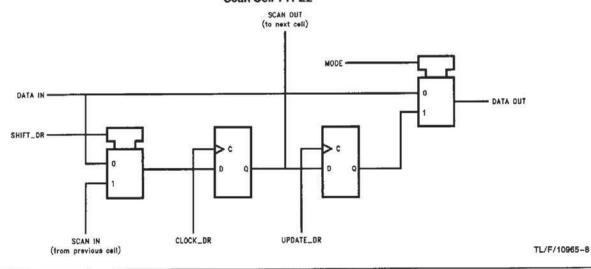
Bypass Register Scan Chain Definition Logic 0

The INSTRUCTION register is an 8-bit register which captures the default value of 10000001. The two least significant bits of this captured value (01) are required by IEEE Std 1149.1. The upper six bits are unique to the SCAN18541T device. SCAN CMOS Test Access Logic devices do not include the IEEE 1149.1 optional identification register. Therefore, this unique captured value can be used as a "pseudo ID" code to confirm that the correct device is placed in the appropriate location in the boundary scan chain.

Instruction Register Scan Chain Definition

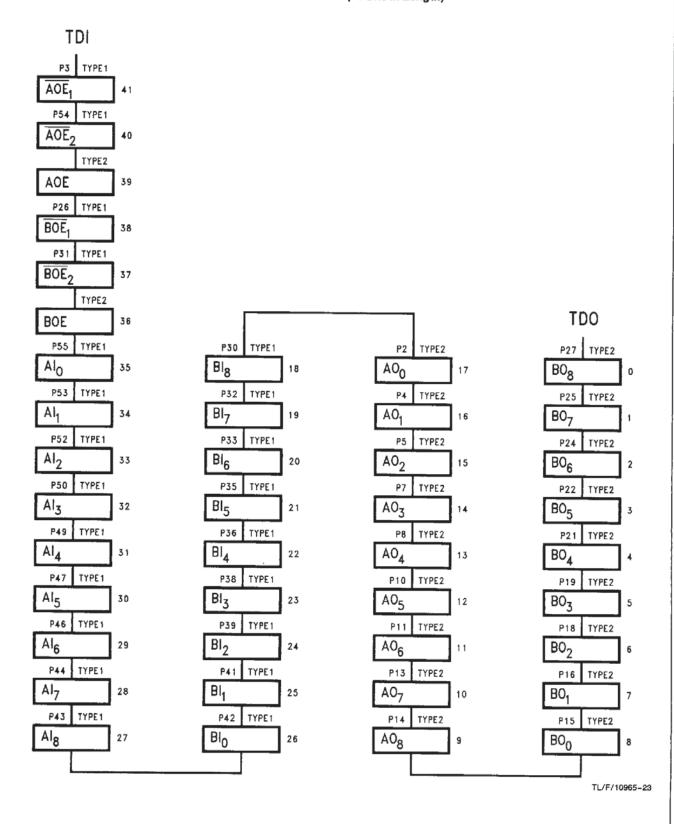

TL/F/10965-10

TL/F/10965-7


MSB → LSB

Instruction Code	Instruction
00000000	EXTEST
10000001	SAMPLE/PRELOAD
10000010	CLAMP
00000011	HIGH-Z
All Others	BYPASS

Scan Cell TYPE1



Scan Cell TYPE2

Description of Boundary-Scan Circuitry (Continued)

Boundary-Scan Register
Scan Chain Definition (42 Bits in Length)

Description of Boundary-Scan Circuitry (Continued)

Boundary-Scan Register Definition Index

Bit No.	Pin Name	Pin No.	Pin Type	Scan Co	ы Туре
41	AOE ₁	3	Input	TYPE1	
40	AOE ₂	54	Input	TYPE1	
39	AOE		Internal	TYPE2	Control
38	BOE ₁	26	Input	TYPE1	Signals
37	BOE ₂	31	Input	TYPE1	
36	BOE		Internal	TYPE2	
35	Alo	55	Input	TYPE1	
34	Al ₁	53	Input	TYPE1	
33	Al ₂	52	Input	TYPE1	
32	Al ₃	50	Input	TYPE1	l
31	Al ₄	49	Input	TYPE1	A-in
30	Al ₅	47	Input	TYPE1	
29	Al ₆	46	Input	TYPE1	
28	Al ₇	44	Input	TYPE1	
27	Al _B	43	Input	TYPE1	
26	BI ₀	42	Input	TYPE1	
25	BI ₁	41	Input	TYPE1	
24	Bl ₂	39	Input	TYPE1	
23	Вlэ	38	Input	TYPE1	
22	Bl ₄	36	Input	TYPE1	B-in
21	Bl ₅	35	Input	TYPE1	
20	Bl ₆	33	Input	TYPE1	
19	BI ₇	32	Input	TYPE1	
18	Bl8	30	Input	TYPE1	
17	AO ₀	2	Output	TYPE2	
16	AO ₁	4	Output	TYPE2	
15	AO ₂	5	Output	TYPE2	
14	AO ₃	7	Output	TYPE2	l
13	AO ₄	8	Output	TYPE2	A-out
12	AO ₅	10	Output	TYPE2	
11	AO ₆	11	Output	TYPE2	
10	AO ₇	13	Output	TYPE2	ł
9	AO ₈	14	Output	TYPE2	
8	BO ₀	15	Output	TYPE2	
7	BO ₁	16	Output	TYPE2	
6	BO ₂	18	Output	TYPE2	1
5	BO ₃	19	Output	TYPE2	
4	BO ₄	21	Output	TYPE2	B-out
3	BO ₅	22	Output	TYPE2	
2	BO ₆	24	Output	TYPE2	
1	BO ₇	25	Output	TYPE2	
0	BO ₈	27	Output	TYPE2	

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.5V to +7.0V DC Input Diode Current (I_{IK}) $V_I = -0.5V$ -20 mA $V_I = V_{CC} + 0.5V$ +20 mA DC Output Diode Current (I_{OK}) $V_{CI} = -0.5V$ -20 mA

 $V_{\rm O} = -0.5 {\rm V}$ $-20 {\rm mA}$ $V_{\rm O} = V_{\rm CC} + 0.5 {\rm V}$ $+20 {\rm mA}$ DC Output Voltage (V_O) $-0.5 {\rm V}$ to $V_{\rm CC} + 0.5 {\rm V}$

DC Output Source/Sink Current (Io) ±70 mA

DC V_{CC} or Ground Current

Per Output Pin ±70 mA

Junction Temperature SSOP

OP + 140°C

Storage Temperature

-65°C to +150°C

ESD (Min) 2000V

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of SCAN circuits outside databook specifications.

Recommended Operating Conditions

Supply Voltage (V_{CC})

 SCAN Products
 4.5V to 5.5V

 Input Voltage (V_I)
 0V to V_{CC}

 Output Voltage (V_O)
 0V to V_{CC}

Operating Temperature (TA)

Commercial -40°C to +85°C
Military -55°C to +125°C
Inimum Input Edge Rate dV/dt 125 mV/ns

Minimum Input Edge Rate dV/dt V_{IN} from 0.8V to 2.0V V_{CC} @ 4.5V, 5.5V

DC Electrical Characteristics

	Parameter				Military	Commercial		Conditions	
Symbol		V _{CC} (V)			$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$	T _A = -40°C to +85°C	Units		
		(*)	Тур		imits				
V _{IH}	Minimum High Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	2.0 2.0	٧	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$	
V _{IL}	Maximum Low Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	0.8 0.8	٧	$V_{OUT} = 0.1V$ or $V_{CC} = 0.1V$	
V _{OH}	Minimum High Output Voltage	4.5 5.5		3.15 4.15	3.15 4.15	3.15 4.15	V	$I_{OUT} = -50 \mu\text{A}$	
		4.5 5.5		2.4 2.4		2.4 2.4	٧	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -32 \text{ mA}$	
		4.5 5.5		2.4 2.4	2.4 2.4		٧	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -24 \text{ mA}$	
V _{OL}	Maximum Low Output Voltage	4.5 5.5		0.1 0.1	0.1 0.1	0.1 0.1	٧	l _{OUT} = 50 μA	
		4.5 5.5		0.55 0.55		0.55 0.55	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OL} = 64 \text{ mA}$	
	0	4.5 5.5		0.55 0.55	0.55 0.55		v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OL} = 48 \text{ mA}$	
lin	Maximum Input Leakage Current	5.5		±0.1	±1.0	± 1.0	μА	V _I = V _{CC} , GND	
In	Maximum Input	5.5		2.8	3.7	3.6	μА	$V_I = V_{CC}$	
TDI, TMS	Leakage			-385	-385	-385	μΑ	V _I = GND	
	Minimum Input Leakage	5.5		-160	-160	-160	μА	VI = GND	
IOLD	†Minimum Dynamic	5.5		94	63	94	mA	V _{OLD} = 0.8V Max	
lohd	Output Current	3.5		-40	-27	-40	mA	V _{OHD} = 2.0V Min	

†Maximum test duration 2.0 ms, one output loaded at a time.

DC Electrical Characteristics (Continued)

		Vcc		nercial	Military	Commercial		
Symbol	Symbol Parameter		$T_A = +25^{\circ}C$ $T_A = -55^{\circ}C$ to $+125^{\circ}C$ $T_A = -40^{\circ}C$ to $+85^{\circ}C$					Conditions
		(V)	Тур		Guaranteed L			
loz	Maximum Output Leakage Current	5.5		±0.5	±10.0	±5.0	μΑ	V_{I} (OE) = V_{IL} , V_{IH}
los	Output Short Circuit Current	5.5		-100	-100	-100	mA (min)	V _O = 0V
Icc	Maximum Quiescent Supply Current	5.5		16.0	168	88	μА	V _O = Open TDI, TMS = V _{CC}
		5.5		750	930	820	μА	V _O = Open TDI, TMS = GND
Icct	Maximum I _{CC}	5.5		2.0	2.0	2.0	mA	$V_I = V_{CC} - 2.1V$
	Per Input			2.15	2.15	2.15	mA	$V_{\rm I} = V_{\rm CC} - 2.1 V$ TDI/TMS Pin, Test One with the Other Floating

^{*}All outputs loaded; thresholds associated with output under test.

Noise Specifications: See Section 4

			Comn	nercial	Military	Commercial	Units	Fig.		
Symbol	Parameter	V _{CC} (V)	T _A =	+ 25°C	T _A = -55°C to +125°C	T _A = -40°C to +85°C				
		(*)	Тур	Typ Guaranteed Limits						
V _{OLP}	Maximum High Output Noise (Notes 2, 3)	5.0	1.0	1.5			٧	4-13		
V _{OLV}	Minimum Low Output Noise (Notes 2, 3)	5.0	-0.6	-1.2			٧	4-13		
V _{OHP}	Maximum Overshoot (Notes 1, 3)	5.0	V _{OH} +1.0	V _{OH} +1.5			٧	4-13		
V _{OHV}	Minimum V _{CC} Droop (Notes 1, 3)	5.0	V _{OH} -1.0	V _{OH} -1.8			٧	4-13		
V _{IHD}	Minimum High Dynamic Input Voltage Level (Notes 1, 4)	5.5	1.6	2.0	2.0	2.0	٧			
V _{ILD}	Maximum Low Dynamic Input Voltage Level (Notes 1, 4)	5.5	1.4	0.8	0.8	0.8	٧			

Note 1: Worst case package.

Note 2: Maximum number of outputs that can switch simultaneously is n. (n-1) outputs are switched LOW and one output held LOW.

Note 3: Maximum number of outputs that can switch simultaneously is n. (n-1) outputs are switched HIGH and one output held HIGH.

Note 4: Maximum number of data inputs (n) switching, (n-1) input switching 0V to 3V. Input under test switching 3V to threshold (VILD).

[†]Maximum test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics Normal Operation: See Section 4

Symbol	Parameter		Commercial T _A = +25°C C _L = 50 pF			М	ilitary	Comi	mercial		
		V _{CC} * (V)				T _A = -55°C to + 125°C C _L = 50 pF		T _A = -40°C to +85°C C _L = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
t _{PLH} , t _{PHL}	Propagation Delay Data to Q	5.0	2.5 2.5		9.0 9.0	2.5 2.5	10.5 10.5	2.5 2.5	9.8 9.8	ns	4-1, 2
t _{PLZ} , t _{PHZ}	Disable Time	5.0	1.5 1.5		10.2 10.2	1.5 1.5	11.2 11.2	1.5 1.5	10.7 10.7	ns	4-3, 4
t _{PZL} , t _{PZH}	Enable Time	5.0	2.0 2.0		11.8 9.5	2.0 2.0	13.5 11.5	2.0 2.0	12.8 10.5	ns	4-3, 4

^{*}Voltage Range 5.0 is 5.0V ±0.5V.

AC Electrical Characteristics Scan Test Operation: See Section 4

	Parameter		Co	mmerc	lai	MI	litary	Comn	nercial		
Symbol		(V)	T _A = +25°C C _L = 50 pF			-55°C 1	A = to + 125°C = 50 pF		= o +85°C 50 pF	Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
t _{PLH} , t _{PHL}	Propagation Delay TCK to TDO	5.0	3.5 3.5		13.2 13.2	3.5 3.5	15.8 15.8	3.5 3.5	14.5 14.5	ns	4-8
t _{PLZ} , t _{PHZ}	Disable Time TCK to TDO	5.0	2.5 2.5		11.5 11.5	2.5 2.5	12.8 12.8	2.5 2.5	11.9 11.9	ns	4-9, 10
t _{PZL} , t _{PZH}	Enable Time TCK to TDO	5.0	3.0 3.0		14.5 14.5	3.0 3.0	16.7 16.7	3.0 3.0	15.8 15.8	ns	4-9, 10
t _{PLH} , t _{PHL}	Propagation Delay TCK to Data Out During Update-DR State	5.0	5.0 5.0	1,1100	18.0 18.0	5.0 5.0	21.7 21.7	5.0 5.0	19.8 19.8	ns	4-8
tplH, tpHL	Propagation Delay TCK to Data Out During Update-IR State	5.0	5.0 5.0		18.6 18.6	5.0 5.0	21.2 21.2	5.0 5.0	20.2 20.2	ns	4-8
tplH, tpHL	Propagation Delay TCK to Data Out During Test Logic Reset State	5.0	5.5 5.5		19.9 19.9	5.5 5.5	23.0 23.0	5.5 5.5	21.5 21.5	ns	4-8
t _{PLZ} , t _{PHZ}	Propagation Delay TCK to Data Out During Update-DR State	5.0	4.0 4.0		16.4 16.4	4.0 4.0	19.6 19.6	4.0 4.0	18.2 18.2	ns	4-9, 10
t _{PLZ} , t _{PHZ}	Propagation Delay TCK to Data Out During Update-IR State	5.0	5.0 5.0		19.5 19.5	5.0 5.0	22.4 22.4	5.0 5.0	20.8 20.8	ns	4-9, 10
t _{PLZ} , t _{PHZ}	Propagation Delay TCK to Data Out During Test Logic Reset State	5.0	5.0 5.0		19.9 19.9	5.0 5.0	23.3 23.3	5.0 5.0	21.5 21.5	ns	4-9, 10
t _{PZL} , t _{PZH}	Propagation Delay TCK to Data Out During Update-DR State	5.0	5.0 5.0		18.9 18.9	5.0 5.0	22.6 22.6	5.0 5.0	20.9 20.9	ns	4-9, 10

^{*}Voltage Range 5.0 is 5.0V \pm 0.5V.

All Propagation Delays involving TCK are measured from the falling edge of TCK.

AC Electrical Characteristics Scan Test Operation: See Section 4 (Continued)

	Parameter		Commercial T _A = +25°C C _L = 50 pF				itary		mercial		
Symbol		V _{CC} * (V)				T _A = -55°C to +125°C C _L = 50 pF		T _A = -40°C to +85°C C _L = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
t _{PZL} , t _{PZH}	Propagation Delay TCK to Data Out During Update-IR State	5.0	6.5 6.5		22.4 22.4	6.5 6.5	26.2 26.2	6.5 6.5	24.2 24.2	ns	4-9, 10
t _{PZL} , t _{PZH}	Propagation Delay TCK to Data Out During Test Logic Reset State	5.0	7.0 7.0		23.8 23.8	7.0 7.0	27.4 27.4	7.0 7.0	25.7 25.7	ns	4-9, 10

^{*}Voltage Range 5.0 is 5.0V ±0.5V.

AC Operating Requirements Scan Test Operation: See Section 4

		V _{CC} *	Commercial Military		Commercial		
Symbol	Parameter		T _A = +25°C C _L = 50 pF	T _A = -55°C to + 125°C C _L = 50 pF	$T_A = -40^{\circ}\text{C to} + 85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$	Units	Fig.
				Guaranteed Minimum	1		
ts	Setup Time, H or L Data to TCK (Note 1)	5.0	3.0	3.0	3.0	ns	4-11
^t H	Hold Time, H or L TCK to Data (Note 1)	5.0	4.5	5.0	4.5	ns	4-11
ts	Setup Time, H or L AOE _n , BOE _n to TCK (Note 3)	5.0	3.0	3.0	3.0	ns	4-11
t _H	Hold Time, H or L TCK to AOE _n , BOE _n (Note 3)	5.0	4.5	4.5	4.5	ns	4-11
t _S	Setup Time, H or L Internal AOE, BOE, to TCK (Note 2)	5.0	3.0	3.0	3.0	ns	4-11
ŧн	Hold Time, H or L TCK to Internal AOE, BOE (Note 2)	5.0	3.0	3.0	3.0	ns	4-11
ts	Setup Time, H or L TMS to TCK	5.0	8.0	8.0	8.0	ns	4-11
ŧн	Hold Time, H or L TCK to TMS	5.0	2.0	2.0	2.0	ns	4-11
ts	Setup Time, H or L TDł to TCK	5.0	4.0	4.0	4.0	ns	4-11
tн	Hold Time, H or L TCK to TDI	5.0	4.5	4.5	4.5	ns	4-11
t _W	Pulse Width TCK H L	5.0	15.0 5.0	15.0 5.0	15.0 5.0	ns	4-12

8-60

All Propagation Delays involving TCK are measured from the falling edge of TCK.

AC Operating Requirements Scan Test Operation: See Section 4 (Continued)

Symbol	Parameter		Commercial	Military	Commercial	
		V _{CC} * (V)	T _A = +25°C		T _A = -40°C to +85°C C _L = 50 pF	Units
			Guaranteed Minimum			
f _{max}	Maximum TCK Clock Frequency	5.0	25	25	25	MHz
T _{PU}	Wait Time, Power Up to TCK	5.0	100	100	100	ns
T _{DN}	Power Down Delay	0.0	100	100	100	ms

^{*}Voltage Range 5.0 is 5.0V ±0.5V.

Extended AC Electrical Characteristics

Symbol	Parameter	T _A = Com V _{CC} = Con C _L = 50 pF 18 Outputs Switching (Note 2)		om pF uts	V _{CC} C _L = 18 O Swit	= Mil = Mil 50 pF utputs ching ste 2)	T _A = Com V _{CC} = Com C _L = 250 pF (Note 3)		T _A = Mil V _{CC} = Mil C _L = 250 pF (Note 3)		Units
		Min	Тур	Max	Min	Max	Min	Max	Min	Max	1
t _{PLH} , t _{PHL}	Propagation Delay Data to Output	3.0 3.0		11.0 11.0	3.0 3.0	11.5 11.5	4.0 4.0	13.0 15.0	4.0 4.0	14.0 16.0	ns
t _{PZH} , t _{PZL}	Output Enable Time	2.5 2.5		11.5 14.0	2.5 2.5	12.5 14.5	(No	ote 4)	(No	te 4)	ns
t _{PHZ} , t _{PLZ}	Output Disable Time	2.0 2.0		11.5 11.5	2.0 2.0	12.0 12.0	(No	ote 5)	(No	te 5)	ns
t _{OSHL} (Note 1)	Pin to Pin Skew HL Data to Output		0.5	1.0	521924			1.0			ns
toslh (Note 1)	Pin to Pin Skew LH Data to Output		0.5	1.0				1.0			ns

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH to LOW (toshl), LOW to HIGH (toslh), or any combination switching LOW to HIGH and/or HIGH to LOW.

Note 2: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all low-to-high, high-to-low, etc.).

Note 3: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

Note 4: TRI-STATE delays are load dominated and have been excluded from the datasheet.

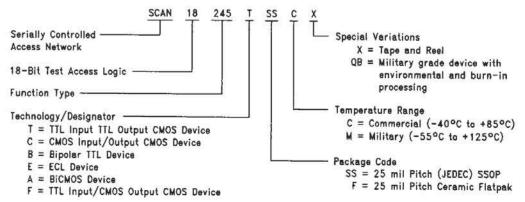
Note 5: The Output Disable Time is dominated by the RC network (500\Omega, 250 pF) on the output and has been excluded from the datasheet.

Capacitance

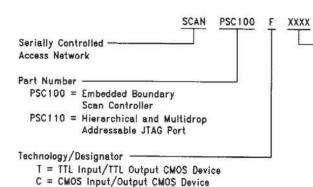
Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Pin Capacitance	4.0	pF	V _{CC} = 5.0V
C _{OUT}	Output Pin Capacitance	13.0	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation Capacitance	34.0	pF	V _{CC} = 5.0V

All Input Timing Delays involving TCK are measured from the rising edge of TCK.

Note 1: This delay represents the timing relationship between the data input and TCK at the associated scan cells numbered 0-8, 9-17, 18-26 and 27-35.


Note 2: This delay represents the timing relationship between AOE/BOE and TCK for scan cells 36 and 39 only.

Note 3: Timing pertains to BSR 37, 38, 40 and 41 only.


Ordering Information and Physical Dimensions

Ordering Information

TL/F/11596-9

TL/F/11596-10

Package/Temp Designator

SC = 50 mL Pitch (JEDEC) SOIC Temperature Range -40°C to +85°C

DMQB = Ceramic DIP, Military Temperature Range, 883 Processing

LMQB = Leadless Chip Carrier, Military Temperature Range, 883 Processing

FMQB = Flatpak, Military Temperature Range, 883 Processing

SSOP Package Thermal Information

F = TTL Input/CMOS Output CMOS Device

B = Bipolar TTL Device

THERMAL RESISTANCE FOR SSOP PACKAGES

E = ECL Device A = BiCMOS Device

Package	Paddle Dimensions (mils)	θJA 0 LFPM (°C/W)	θJA 225 LFPM (°C/W)	^θ JA 500 LFPM (°C/W)	θ _{JA} 900 LFPM (°C/W)	θјс
20LD SSOP	110 x 144	127.0	99.4	90.1	78.5	N/A
24LD SSOP	98 x 106	117.0	91.4	82.7	73.5	N/A
24LD SSOP	120 x 150	100.8	81.3	72.1	65.7	25.7
48LD SSOP	190 x 190	75.5	58.0	51.5	44.0	21.5
56LD SSOP	190 x 190	67.8	53.0	47.4	42.1	18.5

THERMAL RESISTANCES FOR THE MILITARY FLATPAK PACKAGES

Package	Cavity Dimensions (mils)	θJA 0 LFPM (°C/W)	θ _{JA} 225 LFPM (°C/W)	θ _{JA} 500 LFPM (°C/W)	θ _{JA} 900 LFP M (°C/W)	θјс
48LD	250 x 250	74.4	58.1	50.0	43.9	6.6
56LD	250 x 250	59.8	47.9	39.0	35.1	3.4

Dry Pack

Dry Pack is moisture proof packing that is used to store SSOP devices to reduce the susceptibility of the "popcorn effect". Humidity collects inside the package by seeping through the plastic. If moisture is inside the device when the unit goes through a solder machine, the heat quickly changes the moisture to steam, and the pressurized steam pops open the package . . . thus the popcorn effect.

The Dry Pack bag is hermetically sealed and contains a small bag of desiccant which further helps to reduce moisture. All of the SCAN 56-pin SSOP devices will be shipped in Dry Pack bags. Included with the devices will be the following warning label and instructions for rebake:

Dry Pack Warning Label for Surface Mount Packages

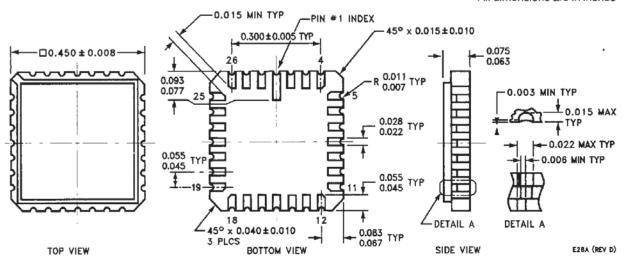
CAUTION

This Bag Contains MOISTURE SENSITIVE DEVICES

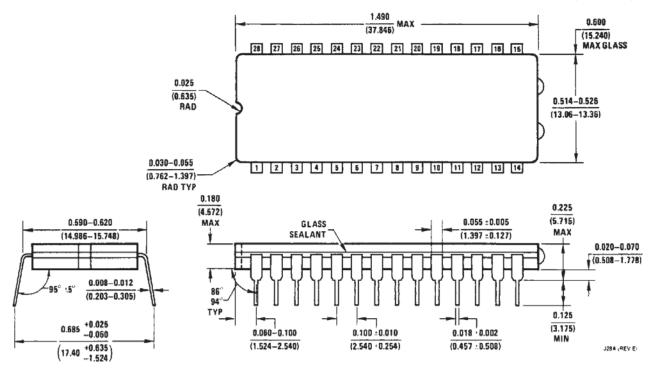
- 1. Shelf life in sealed bag: 24 months at <40°C and <90% Relative Humidity (RH).
- 2. Upon opening this bag, devices to be subjected to I.R., V.P.R. or equivalent process
 - a. Mounted within 48 hours at factory conditions of <30°C/60% RH, or
 - b. Stored at <10% RH.
- 3. Devices require baking, before mounting, if:
 - a. Humidity Indicator Card is >20% when read at 23°C \pm 5°C.
 - b. 2a or 2b are not met.
- 4. If baking is required, devices may be baked for:
 - a. 19 hours at 40°C +5°C/-0°C and <5% RH for low temperature device containers, or
 - b. 8 hours at 125°C ±5°C for high temperature device containers.

Dry-Pack Seal Date: _ (IF BLANK, SEE BAR CODE LABEL)

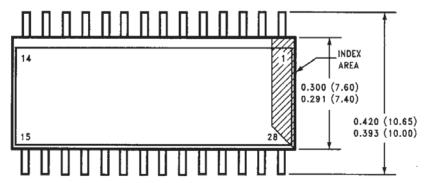
BAG SN 045317

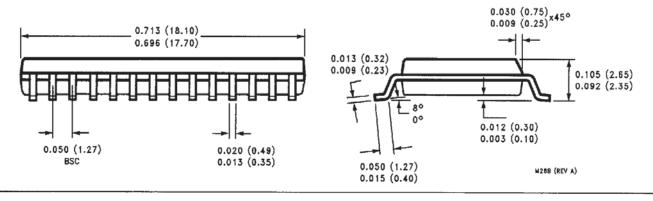

MFR LOT No.

Please follow these instructions carefully to avoid the popcorn effect.

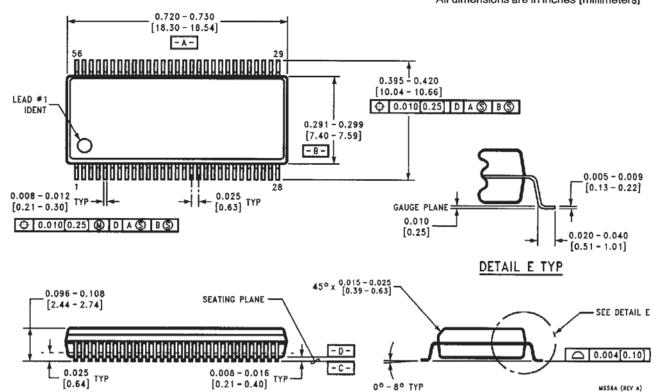

28 Lead Ceramic Leadless Chip Carrier, Type C NS Package Number E28A

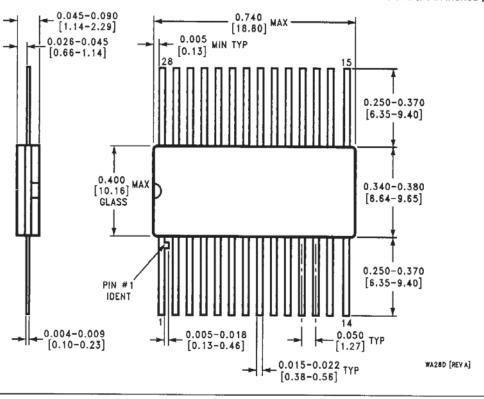
All dimensions are in inches


28 Lead Ceramic Dual-in-Line Package NS Package Number J28A

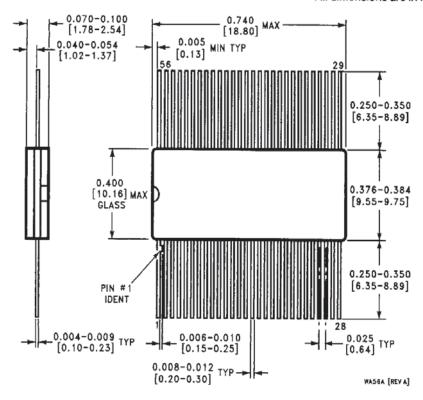

All dimensions are in inches (millimeters)

28 Lead (0.300" Wide) Molded Small Outline Package, JEDEC **NS Package Number M28B**


All dimensions are in inches (millimeters)


56 Lead (0.300" Wide) Molded Shrink Small Outline Package, JEDEC **NS Package Number MS56A**

All dimensions are in inches [millimeters]


28 Lead Cerpack NS Package Number WA28D

All dimensions are in inches [millimeters]

56 Lead Cerpack NS Package Number WA56A

All dimensions are in inches [millimeters]

