

DG181-DG191

High-Speed Drivers with JFET Switch

The DG181 thru DG191 series of analog gates consist of 2 or 4 N-channel junction-type field-effect transistors (JFET) designed to function as electronic switches. Level-shifting drivers enable low-level inputs (0.8V to 2V) to control the ON-OFF state of each switch. The driver is designed to provide a turn-off speed which is faster than turn-on speed, so that break-before-make action is achieved when switching from one channel to another. In the ON state, each switch conducts current equally well in both directions. In the OFF condition, the switches will block voltages up to 20V peak-to-peak. Switch-OFF input-output isolation 50dB at 10MHz, due to the low output impedance of the FET-gate driving circuit.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

DG181 thru DG191

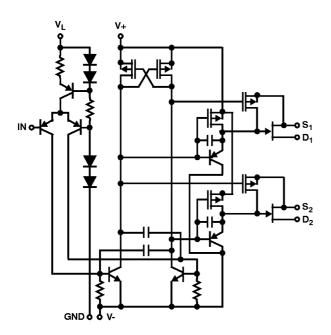
April 1999

Features

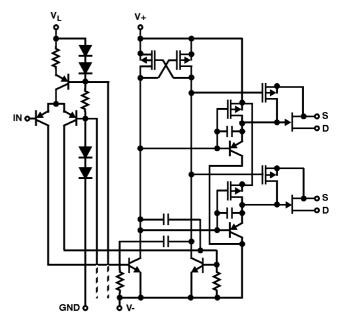
OBSOLETE PRODUCT POSSIBLE SUBSTITUTE PRODUCT DG184, DG185: HI-5049, HI-5045 DG180, DG403 HI-5061, IHE1E1 DG190: DG403. HI-5051, H5151, DG191: HI-5043, HI-0390, IH5043

gnals to ±10V (DG182, Constant Of DG185, DG18 7, to ±7.5V (All Devices)

- ±15V Power Supplies
- <2nA Leakage from Signal Channel in Both ON and **OFF States**
- TTL, DTL, RTL Direct Drive Compatibility
- t_{ON}, t_{OFF} <150ns, Break-Before-Make Action
- Cross-Talk and Open Switch Isolation >50dB at 10MHz (75 Ω Load)


High-Speed Drivers with JFET Switch

Description


The DG181 thru DG191 series of analog gates consist of 2 or 4 N-channel junction-type field-effect transistors (JFET) designed to function as electronic switches. Level-shifting drivers enable low-level inputs (0.8V to 2V) to control the ON-OFF state of each switch. The driver is designed to provide a turn-off speed which is faster than turn-on speed, so that break-before-make action is achieved when switching from one channel to another. In the ON state, each switch conducts current equally well in both directions. In the OFF condition, the switches will block voltages up to 20V peak-to-peak. Switch-OFF input-output isolation 50dB at 10MHz, due to the low output impedance of the FET-gate driving circuit.

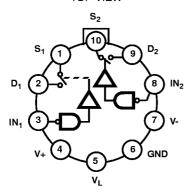
Functional Diagrams (Typical Channel)

DG186. DG187. DG188 - ONE AND TWO CHANNEL SPDT AND SPST CIRCUIT CONFIGURATION

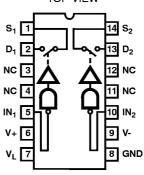
DG183, DG184, DG185 - TWO CHANNEL DPST **CIRCUIT CONFIGURATION**

DG181 Series

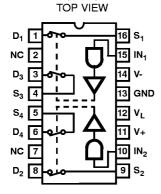
Part Number Information

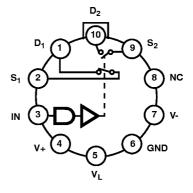

		R _{DS(ON)}	
PART NUMBER	TYPE	(MAX)	PACKAGE
DG181AA	Dual SPST	30Ω	10 Lead CAN
DG181AA/883B	Dual SPST	30Ω	10 Lead CAN
DG181AP	Dual SPST	30Ω	14 Lead SBDIP
DG181AP/883B	Dual SPST	30Ω	14 Lead SBDIP
DG181BA	Dual SPST	30Ω	10 Lead CAN
DG181BP	Dual SPST	30Ω	14 Lead SBDIP
DG182AA	Dual SPST	75Ω	10 Lead CAN
DG182AA/883B	Dual SPST	75Ω	10 Lead CAN
DG182AP	Dual SPST	75Ω	14 Lead SBDIP
DG182AP/883B	Dual SPST	75Ω	14 Lead SBDIP
DG182BA	Dual SPST	75Ω	10 Lead CAN
DG182BP	Dual SPST	75Ω	14 Lead SBDIP
DG184AP	Dual DPST	30Ω	16 Lead SBDIP
DG184AP/883B	Dual DPST	30Ω	16 Lead SBDIP
DG184BP	Dual DPST	30Ω	16 Lead SBDIP
DG185AP	Dual DPST	75Ω	16 Lead SBDIP
DG185AP/883B	Dual DPST	75Ω	16 Lead SBDIP
DG185BP	Dual DPST	75Ω	16 Lead SBDIP

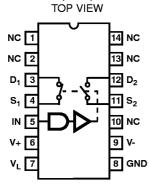
Part Number Information (Continued)

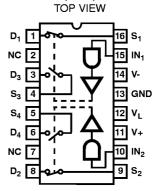

PART NUMBER	TYPE	R _{DS(ON)} (MAX)	PACKAGE
DG187AA	SPDT	30Ω	10 Lead CAN
DG187AA/883B	SPDT	30Ω	10 Lead CAN
DG187AP	SPDT	30Ω	14 Lead SBDIP
DG187AP/883B	SPDT	30Ω	14 Lead SBDIP
DG187BA	SPDT	30Ω	10 Lead CAN
DG187BP	SPDT	30Ω	14 Lead SBDIP
DG188AA	SPDT	75Ω	10 Lead CAN
DG188AA/883B	SPDT	75Ω	10 Lead CAN
DG188AP	SPDT	75Ω	14 Lead SBDIP
DG188AP/883B	SPDT	75Ω	14 Lead SBDIP
DG188BA	SPDT	75Ω	10 Lead CAN
DG188BP	SPDT	75Ω	14 Lead SBDIP
DG190AP	Dual SPDT	30Ω	16 Lead SBDIP
DG190AP/883B	Dual SPDT	30Ω	16 Lead SBDIP
DG190BP	Dual SPDT	30Ω	16 Lead SBDIP
DG191AP	Dual SPDT	75Ω	16 Lead SBDIP
DG191AP/883B	Dual SPDT	75Ω	16 Lead SBDIP
DG191BP	Dual SPDT	75Ω	16 Lead SBDIP

Pinouts and Switching State Diagrams


DUAL SPST - DG181, DG182 (TO-100 METAL CAN) TOP VIEW


DUAL SPST - DG181, DG182 (CDIP) TOP VIEW


DUAL DPST - DG184, DG185 (CDIP)


SPDT - DG187, DG188 (TO-100 METAL CAN) TOP VIEW

SPDT - DG187, DG188 (CDIP)

DUAL SPDT - DG190, DG191 (CDIP)

DG181 Series

Absolute Maximum Ratings Thermal Information Maximum Power Dissipation † Derate 6mW/°C above +75°C Derate 11mW/°C above +75°C † Device mounted with all leads welded or soldered to PC board. Storage Temperature -65°C to +150°C Lead Temperature (Soldering, 10s) +300°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $V_{+} = +15V$, $V_{-} = -15V$, $V_{L} = 5V$, Unless Otherwise Specified

	DEVICE	(NOTE 1)	A SERIES			B SERIES			
PARAMETER	NUMBER	TEST CONDITIONS	-55°C	+25°C	+125°C	-20°C	+25°C	+85°C	UNITS
SWITCH									
I _{S(OFF)}	DG181, DG182, DG184, DG185, DG187, DG188, DG190, DG191	$V_{S} = 10V, V_{D} = -10V,$ $V_{+} = 10V, V_{-} = -20V,$ $V_{1N} = "OFF"$	1	±1	100	1	±5	100	nA
	DG181, DG184, DG187, DG190	$V_S = 7.5V, V_D = -7.5V, V_{IN} = "OFF"$	-	±1	100	-	±5	100	nA
	DG182, DG185, DG188, DG191	$V_S = 10V, V_D = -10V,$ $V_{IN} = "OFF"$	-	±1	100	-	±5	100	nA
I _{D(OFF)}	DG181, DG182, DG184, DG185, DG187, DG188, DG190, DG191	$V_S = 10V, V_D = -10V,$ $V_{+} = 10V, V_{-} = -20V,$ $V_{1N} = "OFF"$	-	±1	100	-	±5	100	nA
	DG181, DG184, DG187, DG190	$V_S = 7.5V, V_D = -7.5V, V_{IN} = "OFF"$	-	±1	100	-	±5	100	nA
	DG182, DG185, DG188, DG191	$V_S = 10V, V_D = -10V,$ $V_{IN} = "OFF"$	-	±1	100	-	±5	100	nA
$I_{D(ON)} + I_{S(ON)}$	DG181, DG184, DG187, DG190	$V_D = V_S = -7.5V, V_{IN} = "ON"$	-	±2	-200	-	-10	-200	nA
	DG182, DG185, DG188, DG191	$V_D = V_S = -10V, V_{IN} = "ON"$	-	±2	-200	-	-10	-200	nA
INPUT									
I _{INL}	All	V _{IN} = 0V	-250	-250	-250	-250	-250	-250	μΑ
I _{INH}	All	V _{IN} = 5V	-	10	20	-	10	20	μΑ
DYNAMIC							•	•	
t _{ON}	30Ω Switches	See Switching Time	-	150	-	-	180	-	ns
	75Ω Switches	Test Circuit	-	250	-	-	300	-	ns
t _{OFF}	30Ω and 75Ω Switches		-	130	-	-	150	-	ns
C _{S(OFF)}	DG181, DG182,	$V_S = -5V, I_D = 0, f = 1MHz$			9 Ty	pical	•	•	pF
. ,	DG184, DG185,	$V_D = +5V, I_S = 0, f = 1MHz$			6 Ty	pical			pF
C _{D(ON)} + C _{S(ON)}	DG187, DG188, DG190, DG191	$V_D = V_S = 0$, $f = 1MHz$			14 Ty	pical			pF
OFF Isolation	1	$R_L = 75\Omega$, $C_L = 3pF$		Ту	pically >50	dB at 10N	1Hz		-

DG181 Series

Electrical Specifications $V_{+} = +15V$, $V_{-} = -15V$, $V_{L} = 5V$, Unless Otherwise Specified (Continued)

	DEVICE	E (NOTE 1)		A SERIES	3	B SERIES			
PARAMETER	NUMBER	TEST CONDITIONS	-55°C	+25°C	+125°C	-20°C	+25°C	+85°C	UNITS
SUPPLY									
l+	DG181, DG182, DG190, DG191	V _{IN} = 5V	-	1.5	-	-	1.5	-	mA
	DG184, DG185		-	0.1	-	-	0.1	-	mA
	DG187, DG188		-	0.8	-	-	0.8	-	mA
 -	DG181, DG182, DG190, DG191		-	-5.0	-	-	-5.0	-	mA
	DG184, DG185		-	-4.0	-	-	-4.0	-	mA
	DG187, DG188		-	-3.0	-	-	-3.0	-	mA
IL	DG181, DG182, DG184, DG185, DG190, DG191		-	4.5	-	-	4.5	-	mA
	DG187, DG188		-	3.2	-	-	3.2	-	mA
I _{GND}	All		-	-2.0	-	-	-2.0	-	mA
1+	DG181, DG182, DG190, DG191	V _{IN} = 0V	-	1.5	-	-	1.5	-	mA
	DG184, DG185		-	3.0	-	-	3.0	-	mA
	DG187, DG188		-	0.8	-	-	0.8	-	mA
-	DG181, DG182, DG190, DG191		-	-5.0	-	-	-5.0	-	mA
	DG184, DG185		-	-5.5	-	-	-5.5	-	mA
	DG187, DG188		-	-3.0	-	-	-3.0	-	mA
IL	DG181, DG182, DG184, DG185, DG190, DG191		-	4.5	-	-	4.5	-	mA
	DG187, DG188		-	3.2	-	-	3.2	-	mA
I _{GND}	All		-	-2.0	-	-	-2.0	-	mA

NOTE:

$\textbf{Electrical Specifications} \quad \text{Maximum Resistances (R}_{DS(ON)} \, \text{MAX)}$

DEVICE	TEST CONDITIONS (NOTE 1)		MILITARY TEMPERATURE		INDUSTRIAL TEMPERATURE				
NUMBER	V+ = 15V, V- =	-15V, V _L = 5V	-55°C	+25°C	+125°C	-20°C	+25°C	+85°C	UNITS
DG181	$V_D = -7.5V$	$I_S = -10 \text{mA}, V_{IN} = \text{"ON"}$	30	30	60	50	50	75	Ω
DG182	V _D = -10V		75	75	100	100	100	150	Ω
DG184	$V_D = -7.5V$		30	30	60	50	50	75	Ω
DG185	V _D = -10V		75	75	150	100	100	150	Ω
DG187	$V_D = -7.5V$		30	30	60	50	50	75	Ω
DG188	V _D = -10V		75	75	150	100	100	150	Ω
DG190	$V_D = -7.5V$		30	30	60	50	50	75	Ω
DG191	V _D = -10V		75	75	150	100	100	150	Ω

NOTES:

- 1. See Switching State Diagrams for $V_{\mbox{\footnotesize{IN}}}$ "ON" and $V_{\mbox{\footnotesize{IN}}}$ "OFF" Test Conditions.
- 2. Normally the minimum signal handling capability of the DG181 thru DG191 family is 20V peak to peak for the 75Ω switches and 15V peak-to-peak for the 30Ω (refer I_D and I_S tests above).
- 3. For other Analog Signals, the following guidelines can be used: proper switch turn-off requires that $V- \le V_{ANALOG}(peak) V_P$ where $V_P = 7.5V$ for the 80Ω switches and $V_P = 5.0V$ for 75Ω switches e.g., 10V minimum (-peak) analog signal and a 75Ω switch ($V_P = 5V$), requires that $V- \le -10V$ -5V= -15V.

^{1.} See Switching State Diagrams for V_{IN} "ON" and V_{IN} "OFF" Test Conditions.

DUAL SPST - DG181/182

TEST CONDITIONS					
V _{IN} "ON" = 0.8V	All Channels				
V _{IN} "OFF" = 2.0V	All Channels				

NOTE:

1. Switch states are for logic "1" input = 2.0V.

DUAL DPST - DG184/185

TEST CONDITIONS				
V _{IN} "ON" = 2.0V	All Channels			
V _{IN} "OFF" = 0.8V	All Channels			

NOTE:

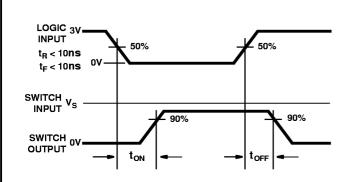
1. Switch states are for logic "1" input = 2.0V.

SPDT - DG187/188

TEST CONDITIONS					
V _{IN} "ON" = 2.0V	Channel 1				
V _{IN} "ON" = 0.8V	Channel 2				
V _{IN} "OFF" = 2.0V	Channel 2				
V _{IN} "OFF" = 0.8V	Channel 1				

NOTE:

1. Switch states are for logic "1" input = 2.0V.

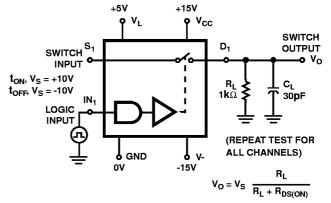

SPDT - DG190/191

TEST CONDITIONS				
V _{IN} "ON" = 2.0V	Channel 1 and 2			
V _{IN} "ON" = 0.8V	Channel 3 and 4			
V _{IN} "OFF" = 2.0V	Channel 3 and 4			
V _{IN} "OFF" = 0.8V	Channel 1 and 2			

NOTE:

1. Switch states are for logic "1" input = 2.0V.

Switching Time Test Circuits



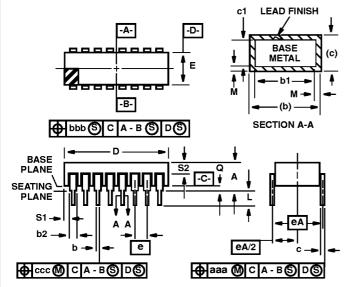

FIGURE 1. SWITCHING TIME TEST WAVEFORMS (Note 1)

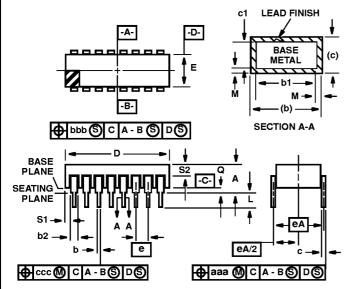
FIGURE 2. SWITCHING TIME TEST CIRCUIT (Note 2)

NOTES:

- 1. Switch output waveform shown for V_S = constant with logic input waveform as shown.
- 2. V_S may be + or as per switching time test circuit. V_O is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

Ceramic Dual-In-Line Metal Seal Packages (SBDIP)

NOTES:


- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2
- 5. Dimension Q shall be measured from the seating plane to the base plane.
- 6. Measure dimension S1 at all four corners.
- Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
- 8. N is the maximum number of terminal positions.
- 9. Braze fillets shall be concave.
- 10. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 11. Controlling dimension: INCH.

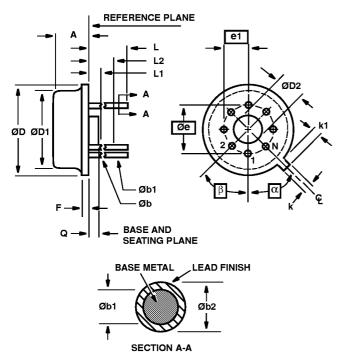
D14.3 MIL-STD-1835 CDIP2-T14 (D-1, CONFIGURATION C) 14 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE

	INC	HES	MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.785	-	19.94	-
Е	0.220	0.310	5.59	7.87	-
е	0.100	BSC	2.54	BSC	-
eA	0.300	BSC	7.62	BSC	-
eA/2	0.150	BSC	3.81	BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	5
S1	0.005	-	0.13	-	6
S2	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2
N	1	4	1	4	8

Rev. 0 4/94

Ceramic Dual-In-Line Metal Seal Packages (SBDIP)

NOTES:


- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2
- 5. Dimension Q shall be measured from the seating plane to the base plane.
- 6. Measure dimension S1 at all four corners.
- Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
- 8. N is the maximum number of terminal positions.
- 9. Braze fillets shall be concave.
- 10. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 11. Controlling dimension: INCH.

D16.3 MIL-STD-1835 CDIP2-T16 (D-2, CONFIGURATION C) 16 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE

	INC	HES	MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.840	-	21.34	-
Е	0.220	0.310	5.59	7.87	-
е	0.100	BSC	2.54	BSC	-
eA	0.300	BSC	7.62	BSC	-
eA/2	0.150	BSC	3.81	BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	5
S1	0.005	-	0.13	-	6
S2	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2
N	1	6	1	6	8

Rev. 0 4/94

Metal Can Packages (Can)

NOTES:

- (All leads) Øb applies between L1 and L2. Øb1 applies between L2 and 0.500 from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 from the reference plane.
- 2. Measured from maximum diameter of the product.
- 3. α is the basic spacing from the centerline of the tab to terminal 1 and β is the basic spacing of each lead or lead position (N -1 places) from α , looking at the bottom of the package.
- 4. N is the maximum number of terminal positions.
- 5. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 6. Controlling dimension: INCH.

T10.B MIL-STD-1835 MACY1-X10 (A2) 10 LEAD METAL CAN PACKAGE

	INC	HES	MILLIM	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES	
Α	0.165	0.185	4.19	4.70	-	
Øb	0.016	0.019	0.41	0.48	1	
Øb1	0.016	0.021	0.41	0.53	1	
Øb2	0.016	0.024	0.41	0.61	-	
ØD	0.335	0.375	8.51	9.52	-	
ØD1	0.305	0.335	7.75	8.51	-	
ØD2	0.110	0.160	2.79	4.06	-	
е	0.230	BSC	5.84	BSC	-	
e1	0.115	BSC	2.92	BSC	-	
F	-	0.040	-	1.02	-	
k	0.027	0.034	0.69	0.86	-	
k1	0.027	0.045	0.69	1.14	2	
L	0.500	0.750	12.70	19.05	1	
L1	-	0.050	-	1.27	1	
L2	0.250	-	6.35	-	1	
Q	0.010	0.045	0.25	1.14	-	
α	36°	BSC	36° BSC		3	
β	36°	BSC	36° BSC		3	
N	1	0	1	0	4	

Rev. 0 5/18/94