

74AC11191

Synchronous 4-Bit Up/Down Binary Counter

The 74AC11191 is a synchronous, 4-bit binary reversible up/down counter. Synchronous counting operation is provided by clocking all flip-flops simultaneously so that the outputs change coincident with each other when instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

Single Down/Up Count Control Line	DW OR N PACKAGE (TOP VIEW)					
 Look-Ahead Circuitry Enhances Spectra Cascaded Counters 	ed of		20] D/U			
• Fully Synchronous in Count Modes		Q _A [] 2 Q _B [] 3	19 CLK 18 A			
 Asynchronously Presettable with Log Control 	ad		17 B 16 V _{CC}			
Flow-Through Architecture to Optimi	ze	GND 6	15 V _{CC}			
PCB Layout		GND [] 7 Q _C [] 8	14 C 13 D			
 Center-Pin V_{CC} and GND Configurati Minimize High-Speed Switching Nois 		Q _D [9 MAX/MIN [10	12 CTEN 11 LOAD			
	ente d					

- EPIC[™] (Enhanced-Performance Implanted CMOS) 1-μm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline Packages and Standard Plastic 300-mil DIPs

description

The 74AC11191 is a synchronous, 4-bit binary reversible up/down counter. Synchronous counting operation is provided by clocking all flip-flops simultaneously so that the outputs change coincident with each other when instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

The outputs of the four flip-flops are triggered on a low-to-high-level transition of the clock input if the enable input $\overline{(\text{CTEN})}$ is low. A high at $\overline{\text{CTEN}}$ inhibits counting. The direction of the count is determined by the level of the down/up (D/\overline{U}) input. When D/\overline{U} is low, the counter counts up and when D/\overline{U} is high, it counts down.

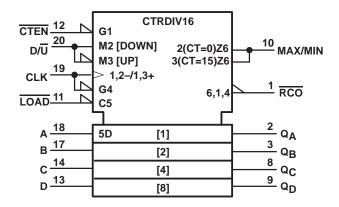
These counters feature a fully independent clock circuit. Changes at the control inputs (\overline{CTEN} and D/\overline{U}) that will modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter will be dictated solely by the condition meeting the stable setup and hold times.

These counters are fully programmable; that is, the outputs may be preset to any number between 0 and 15 by placing a low on the load input and entering the desired data at the data inputs. The outputs will change to agree with the data inputs independently of the level of the clock input. This feature allows the counter to be used as a modulo-N divider by simply modifying the count length with the preset inputs.

Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock while the count is zero (all outputs low) counting down or maximum (15) counting up. The ripple-clock output ($\overline{\text{RCO}}$) produces a low-level output pulse under those same conditions but only while the clock input is low. The counter can easily be cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

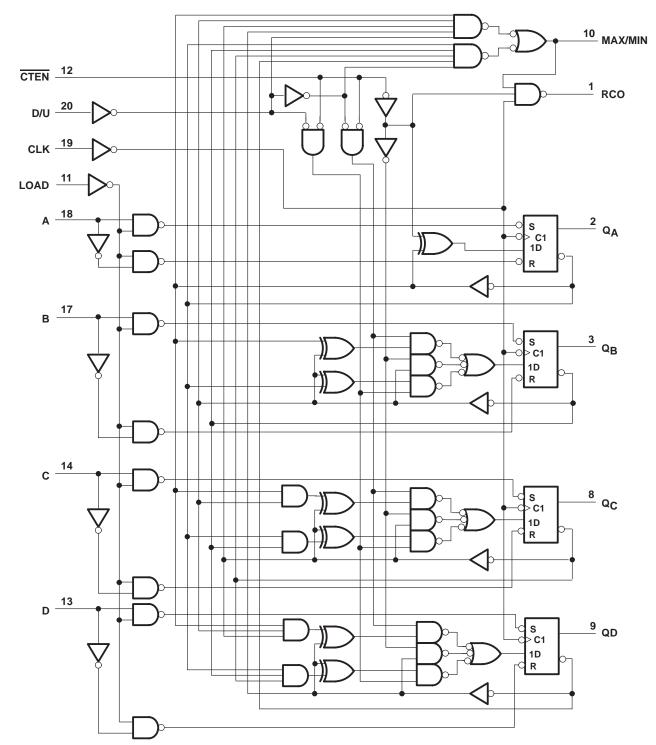
The 74AC11191 is characterized for operation from -40° C to 85° C.

EPIC is a trademark of Texas Instruments Incorporated.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

1

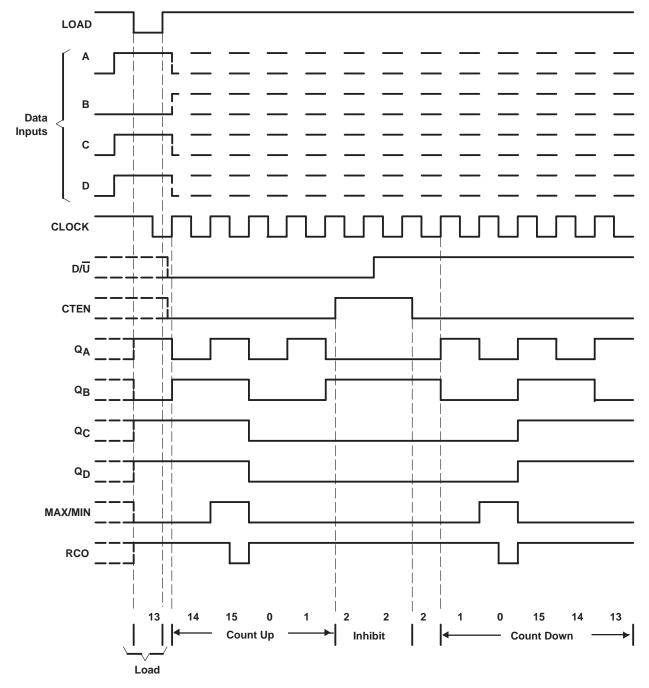
SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

logic diagram (positive logic)



SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

typical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to binary thirteen
- 2. Count up to fourteen, fifteen (maximum), zero, one, and two
- 3. Inhibit
- 4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen.

SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	$\dots \dots -0.5$ V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	$\dots \dots -0.5$ V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC})	$\dots \dots \pm 20 \text{ mA}$
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	± 50 mA
Continuous current through V _{CC} or GND pins	± 150 mA
Storage temperature range	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

			MIN	NOM	MAX	UNIT
VCC	Supply voltage		3	5	5.5	V
		V _{CC} =	3 V 2.1			
VIH	High-level input voltage	V _{CC} =	4.5 V 3.15			V
		V _{CC} =	5.5 V 3.85			
		V _{CC} =	3 V		0.9	
VIL	Low-level input voltage	V _{CC} =	4.5 V		1.35	V
		V _{CC} =	5.5V		1.65	
VI	Input voltage		0		VCC	V
VO	Output voltage		0		VCC	V
		V _{CC} =	3 V		-4	
IOH	High-level output current	V _{CC} =	4.5 V		-24	mA
		V _{CC} =	5.5 V		-24	
		V _{CC} =	3 V		12	
IOL	Low-level output current	V _{CC} =	4.5 V		24	mA
	V _{CC} = 5.5 V				24	
$\Delta t/\Delta v$	Input transition rise or fall rate		0		10	ns/V
TA	Operating free-air temperature		- 40		85	°C

recommended operating conditions

SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	Т	₄ = 25°C	;	MIN	МАХ	UNIT
FARAMETER	TEST CONDITIONS		MIN	TYP	MAX	WIIN	IVIAA	UNIT
		3 V	2.9			2.9		
	I _{OH} = - 50 μA	4.5 V	4.4			4.4		
		5.5 V	5.4			5.4		
Vон	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		V
	1011 - 24 mA	4.5 V	3.94			3.8		
	I _{OH} = – 24 mA		4.94			4.8		
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
		3 V			0.1		0.1	
	I _{OL} = 50 μA	4.5 V			0.1		0.1	
		5.5 V			0.1		0.1	
VOL	I _{OL} = 12 mA	3 V			0.36		0.44	V
	10 21.00	4.5 V			0.36		0.44	
	I _{OL} = 24 mA				0.36		0.44	
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
lj	$V_I = V_{CC}$ or GND	5.5 V			± 0.1		± 1	μA
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V			8		80	μA
Ci	V _I = V _{CC} or GND	5 V		4				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

				T _A =	T _A = 25°C		MAX	UNIT
				MIN	MAX	MIN	WAA	UNIT
fclock	Clock frequency		-	0	50	0	50	MHz
	Pulse duration		LOAD low	4.8		4.8		ns
١W	t _w Pulse duration		CLK high or low	10		10		115
			Data before LOAD↑	4		4		
	Satur time	Setup time	CTEN before CLK [↑]	12.5		12.5		-
t _{su}	Setup time		D/U before CLK↑	13.5		13.5		ns
			LOAD inactive before CLK [↑]	2.5		2.5		
		Hold time	Data after LOAD↑	1		1		
th	Hold time		CTEN after CLK [↑]	0		0		ns
		D/U after CLK↑	0		0			

SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

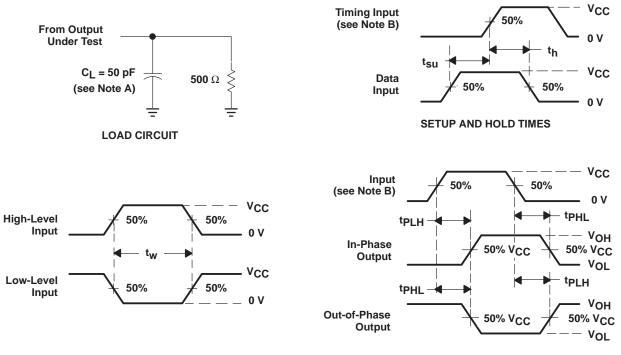
			T _A = 25°C		MIN MAX	UNIT		
			MIN	MAX		WAA	UNIT	
fclock	Clock frequency		0	100	0	100	MHz	
t _w Pulse duration	LOAD low	4		4		ns		
	CLK high or low	7.2		7.2		115		
		Data before LOAD↑	3		3			
•	Setup time	CTEN before CLK [↑]	8		8			
t _{su}	Setup time	D/U before CLK↑	8.5		8.5		ns	
		LOAD inactive before CLK↑	2		2			
t _h Hold time		Data after LOAD↑	1.5		1.5			
	Hold time	CTEN after CLK [↑]	0.5		0.5		ns	
		D/Ū after CLK↑	0		0			

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	Т	₄ = 25°C	;		MIN MAX	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIN	WAX	UNIT
f _{max}			50	80		50		MHz
^t PLH	LOAD	Any Q	3.7	10.7	13.4	3.7	14.9	
^t PHL	LOAD	Any Q	3.6	9.3	12.3	3.6	14.1	ns
^t PLH	LOAD	MAX/MIN	5	14.2	18.7	5	21.1	ns
^t PHL	LOAD		4.6	12.6	17.5	4.6	19.6	115
^t PLH	LOAD	RCO	5.2	15.4	20.2	5.2	22.9	ns
^t PHL	LOAD	KOO	6	15.7	21.6	6	24.7	115
^t PLH	A, B, C, or D	Any Q	3.4	9.8	12.3	3.4	13.8	ns
^t PHL	A, B, C, 01 D	Any Q	3.5	8.9	12.1	3.5	13.7	115
^t PLH	A, B, C, or D	MAX/MIN	4.7	13.5	18.2	4.7	20.7	
^t PHL	A, B, C, 01 D		4	11.8	17.1	4	19.3	ns
^t PLH	A, B, C, or D	RCO	5	14.7	19.9	5	22.5	ns
^t PHL	A, B, C, O B	Neo	5.3	15.1	21.1	5.3	24.3	115
^t PLH	CLK	RCO	2.8	8.7	11.5	2.8	12.9	ns
^t PHL	OER	Neo	2.8	7.8	10.6	2.8	11.9	115
^t PLH	CLK	Any Q	2.2	7.5	9.8	2.2	11.1	ns
^t PHL	OER	Ally Q	2.7	7.5	11	2.7	12.7	115
^t PLH	CLK	MAX/MIN	3.7	9.9	12.2	3.7	13.8	ns
^t PHL	OER		4.1	10.2	14.4	4.1	16	115
^t PLH	D/U	RCO	4.1	11.2	14.4	4.1	15.9	ns
^t PHL	B/O	Neo	4.1	10.2	14.3	4.1	16.5	115
^t PLH	D/U	MAX/MIN	2.7	8.7	11.5	2.7	12.7	ns
^t PHL	0/0		3.1	8.3	11.8	3.1	13.6	115
^t PLH	CTEN	RCO	2.5	7.2	9	2.5	10.3	ns
^t PHL			2.6	6.6	8.8	2.6	10	115

SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)


PARAMETER	FROM TO		T	ຊ = 25 °C	>	MIN	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP MAX		MIN MAX		
fmax			100	135		100		MHz
^t PLH	LOAD	Any Q	3.1	6.7	9.4	3.1	10.6	ns
^t PHL	LOAD	Any Q	3	6.4	9	3	10.2	115
^t PLH	LOAD	MAX/MIN	4.3	8.8	12.5	4.3	14.3	ns
^t PHL	LOAD		4	8.4	12	4	13.7	115
^t PLH	LOAD	RCO	4.5	9.7	13.7	4.5	15.4	ns
^t PHL	LOAD	KOO	5	10.1	14.4	5	16.3	115
^t PLH	A, B, C, or D	Any Q	2.9	6.2	8.7	2.9	9.8	ns
^t PHL	А, В, С, ОГ Д	Any Q	3	6.1	8.7	3	9.8	115
^t PLH	A, B, C, or D	MAX/MIN	4.1	8.4	12.2	4.1	13.7	ns
^t PHL	A, B, C, 01 D		3.5	8	11.8	3.5	13.4	115
^t PLH	A, B, C, or D	RCO	4.3	9.2	13.5	4.3	15.1	ns
^t PHL	А, В, С, ОГВ	Kee	4.7	9.7	14	4.7	16	115
^t PLH	CLK	RCO	2.4	5.9	8.4	2.4	9.1	ns
^t PHL	OLK	KOO	2.9	5.6	7.7	2.9	8.7	115
^t PLH	CLK	Any Q	1.9	5.2	7.6	1.9	8.4	ns
^t PHL	GER		2.4	5.4	8	2.4	9.4	115
^t PLH	CLK	MAX/MIN	3	6.5	8.8	3	10.4	ns
^t PHL	OLK		3.6	7.1	10.4	3.6	10.8	115
^t PLH	D/U	RCO	3.5	7.2	10.2	3.5	11.3	ns
^t PHL			3.5	6.9	10	3.5	11.5	115
^t PLH	D/U	MAX/MIN	2.3	5.7	8.1	2.3	9.1	ns
^t PHL			2.7	5.9	8.6	2.7	9.7	113
^t PLH	CTEN	RCO	2.1	4.9	6.8	2.1	7.7	
^t PHL			2.2	4.8	6.7	2.2	7.7	ns

operating characteristics, V_{CC} = 5 V, T_A = 25° C

PARAMETER		TEST CONDITIONS	TYP	UNIT
Cpd	Power dissipation capacitance	$C_L = 50 \text{ pF}, \qquad f = 1 \text{ MHz}$	66	pF

SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

PARAMETER MEASUREMENT INFORMATION

PULSE DURATION

PROPAGATION DELAY TIMES

- NOTES: A. CL includes probe and jig capacitance.
 - B. Input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
74AC11191DW	OBSOLETE	SOIC	DW	20	TBD	Call TI	Call TI
74AC11191N	OBSOLETE	PDIP	Ν	20	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated