XL403D Digital Accelerometer

Rugged ±1 g to ±15 g Dynamic Interface Built-in Analyses

Advanced Digital Accelerometer

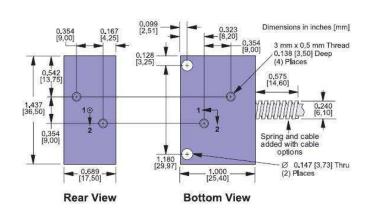
Measurement Specialties' XL403D accelerometers offer precision measurements while additionally performing basic functions within the sensor. Reduce the need for post-processing time and equipment plus shrink data file sizes; simply request minimum or maximum values, peak-to-peak, magnitude, tilt, or threshold. The output is configurable by the user — choose number of axes, units returned, bandwidth, sample rates, function specifics, and analysis results.

Accuracy is improved by minimizing variations due to temperature and aging effects, and their tough, compact housing holds potted electronics.

Choose the number of axes and specify any range option up to ±15g to best suit your application.

Users are supplied with a calibration certificate listing sensitivity and offset for each sensor. Custom versions can be provided.

FEATURES

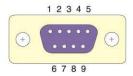

- Built-in Analyses
- Dynamic Customer Interface
- Flexible Output
- High Accuracy and Linearity over Wide Temperature Range
- Rugged for Harsh Environments
- Built-in Power Supply Regulation
- Easy Installation
- Three Year Warranty

APPLICATIONS

- Vehicle dynamics
- Construction Equipment
- Research & Development
- Test & Measurement
- Military/Aerospace

dimensions

Two through holes and four 3 mm x 0.5 mm threaded holes are provided for mounting.


Mounting adapters (sold separately)

connections

T004 Male D-Shell Connector

A2+ Red 3 A3+ Orange

Signal -Yellow S RS485-Green

RS485+ Blue

ST/Aux Violet +Vs Grey

The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice t any product herein. Measurement Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Measuremer Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications. All operating parameters must be validated for each customer application by customer's technical experts. Measurement Specialties, Inc. does not convey any license under its patent rights nor the rights of others.

A1+

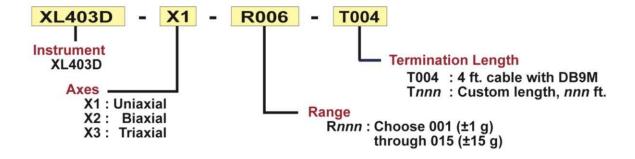
Brown

Pin

Sional

Gnd

White


performance specifications

T_A = T_{min} to T_{max}; 8.5 ≤ V_S ≤ 36 V; Acceleration = 0 g unless otherwise noted; within one year of calibration. Improved specifications available upon request.

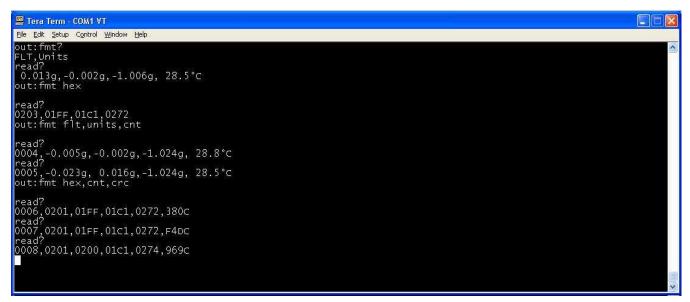
PARAMETERS	Min	Typical	Max	Units	Conditions/Notes
Range: Measurement Full Scale	±1		±15	g	On each axis. Must specify via Option Rnnn
Sensitivity					
At 25°C, Option R005		400*		mV/g	Precise values on cal certificate
Drift Tmin to Tmax		±0.65	±3	%	Percent of sensitivity at 25°C
Zero g Bias Level					
At 25 °C		2.5		V	Precise values on cal certificate
Drift to Tmin or Tmax		±10	±20	mg	At <1.25°C/min. temperature rate of change
Alignment					
Deviation from Ideal Axes		±1.0	±2.0	degrees	Precise values on cal certificate. Can be compensated if required
Transverse Sensitivity		±0.25		%	Inherent sensor error, excluding misalignment
Nonlinearity		±0.1	±0.25	% FSR	Best fit straight line
Frequency Response, 5-pole	0		800	Hz	Upper cutoff per User selection, -3 dB pt ±10%
Noise Density		100		μg/√Hz	10 Hz to 400 Hz
Self-Test Pull-Up Resistor	5			kΩ	Logic "1"≥3.5 V, Logic "0"≤1.5 V; "0" causes self-test
Temperature Sensor			±0.2	ōC	Accuracy ±1 °C
Scan Rate	0.0007		2500	scans/sec	Default scan list (A1, A2, A3, T1)
ADC Resolution		10		bits	
Absolute Accuracy		±2		LSB	
Outputs					
Output Voltage Swing	0.5		4.5	V	$I_{out} = \pm 0.5 \text{ mA}$
Capacity Drive Capability		1000		pF	
Power Supply (V _s)					
Input Voltage Limits	-80		+80	V	-80 V continuous, >38 V if ≤550 ms, duty <1%
Input Voltage - Operating	+8.5		+36	V	Continuous
Input Current		25		mA	
Rejection Ratio		>120		dB	DC
Temperature Range (T _A)	-40		+85	ōC	
Mass		38		grams	Precise values on cal certificate
Shock Survival	-5000		+5000	g	Any axis for 0.5 ms, powered or unpowered

^{*}Scale linearly with range option Rnnn; see Ordering Information

ordering info

Please note: PC Interface kit is required for digital sensor

XL403D Digital Accelerometer



setup

Use the 35250AK0/AK1 interface kit (sold separately) to connect the XL403D to a computer with a serial port and supply power (USB adapters available if needed). Use an ASCII terminal emulator of your choice to interface with the sensor (Tera Term Pro is recommended).

Sample Commands

	Set Commands	Query Commands		
		IDN?	device identification	
ROUT:SCAN	set channels to be scanned	ROUT:SCAN?	channels being scanned	
		READ?	show single scan	
INP:FILT:FREQ	set cutoff frequency	INP:FILT:FREQ?	current cutoff filter setting	
TRIG:SOUR:TIM	set time-based scan	TRIG:SOUR?	current trigger source	
TRIG:COUNT	set maximum number of triggers	TRIG:COUNT?	current max number of triggers	
INIT	begin scanning as configured	SYST:ERR?	current error status	
OUT:FMT	format output	OUT:FMT?	current formatting	
CONF:FNC <name></name>	configure function	CONF:FNC?	current function definitions	

Display engineering units (FLT), HEX values; add a scan count or CRC to each scan

XL403D Functions

Configure XL403D's built-in functions to execute as needed. Each unique function is performed on the scan measurements, with results maintained internally within the sensor.

MIN – tracks the minimum reading on each channel since the function was configured

MAX - tracks the maximum reading on each channel since the function was configured

MAG - calculates the magnitude of the vector sum of axes A1, A2 and A3

PTP – tracks the peak-to-peak value for each channel since the function was configured. This is equal to MAX – MIN for each channel

TLT - calculates the 2-axis tilt angle for any 2 axes that are in scan

TH1 - tracks channels readings against individual channel threshold values

TH2 - tracks MAG or TLT values against a threshold

OU1/OU2/OU3 – output functions that print the values of functions on a configurable periodic basis

When the XL403D threshold function is set, external controls can be triggered when the threshold is reached. Receive a warning, flip a switch, apply a brake - take action immediately when limits are exceeded.