74LVC1G18

1-of-2 non-inverting demultiplexer with 3-state deselected output

Rev. 02 — 30 August 2007

Product data sheet

1. General description

The 74LVC1G18 is a 1-of-2 non-inverting demultiplexer with a 3-state output. The device buffers the data on input pin A and passes it either to output 1Y or 2Y, depending on whether the state of the select input (pin S) is LOW or HIGH. Input can be driven from either 3.3 or 5 V devices. These features allow the use of these devices in a mixed 3.3 and 5 V environment.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

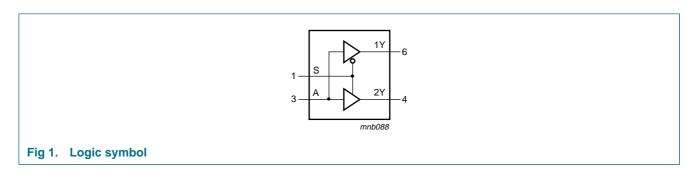
2. Features

- Wide supply voltage range from 1.65 to 5.5 V
- 5 V tolerant input/output for interfacing with 5 V logic
- High noise immunity
- Complies with JEDEC standard:
 - ◆ JESD8-7 (1.65 V to 1.95 V)
 - ◆ JESD8-5 (2.3 V to 2.7 V)
 - ◆ JESD8B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - ◆ HBM EIA/JESD22-A114E exceeds 2000 V
 - ◆ MM EIA/JESD22-A115-A exceeds 200 V.
- \pm 24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- SOT363 and SOT457 package
- Specified from -40 to +85 °C and -40 to +125 °C.

3. Ordering information

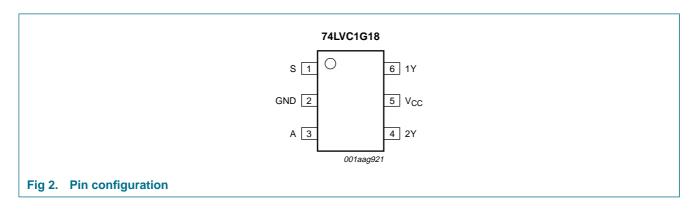
Table 1. Ordering information

Type number	Package					
	Temperature range	Name	Description	Version		
74LVC1G18GW	–40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363		
74LVC1G18GV	–40 °C to +125 °C	SC-74	plastic surface-mounted package (TSOP6); 5 leads	SOT457		


1-of-2 non-inverting demultiplexer with 3-state deselected output

4. Marking

Table 2. Marking


Type number	Marking code
74LVC1G18GW	VW
74LVC1G18GV	V18

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
S	1	data select
GND	2	ground (0 V)
A	3	data input
2Y	4	data output
V _{CC}	5	supply voltage
1Y	6	data output

1-of-2 non-inverting demultiplexer with 3-state deselected output

7. Functional description

Table 4. Function table^[1]

Input		Output	
S	A	1Y	2Y
L	L	L	Z
L	Н	Н	Z
Н	L	Z	L
Н	Н	Z	Н

^[1] H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

		, ,			•
Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage		[<u>1]</u> -0.5	+6.5	V
I _{OK}	output clamping current	$V_O > V_{CC}$ or $V_O < 0$ V	-	±50	mA
Vo	output voltage	Active mode	[1][2] -0.5	$V_{CC} + 0.5$	V
		Power-down mode	[1][2] -0.5	+6.5	V
I _O	output current	$V_O = 0 V \text{ to } V_{CC}$	-	±50	mA
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[3]	300	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		1.65	-	5.5	V
V_{I}	input voltage		0	-	5.5	V
V_{O}	output voltage	Active mode	0	-	V_{CC}	V_{O}
		V _{CC} = 0 V; Power-down mode	0	-	5.5	Vo
T _{amb}	ambient temperature		-40	-	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	$V_{CC} = 1.65 \text{ V to } 2.7 \text{ V}$	-	-	20	ns/V
		$V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}$	-	-	10	ns/V

^[2] When $V_{CC} = 0 \text{ V}$ (Power-down mode), the output voltage can be 5.5 V in normal operation.

^[3] For SC-74 and SC-88 packages: above 87.5 $^{\circ}$ C the value of P_{tot} derates linearly with 4.0 mW/K.

1-of-2 non-inverting demultiplexer with 3-state deselected output

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
T _{amb} = -	40 °C to +85 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7	-	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	V
		V _{CC} = 4.5 V to 5.5 V	$0.7 \times V_{CC}$	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	V
		V _{CC} = 4.5 V to 5.5 V	-	-	$0.3 \times V_{CC}$	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -100 \mu A$; $V_{CC} = 1.65 \text{ V}$ to 5.5 V	V _{CC} - 0.1	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.3	-	-	V
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.8	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 100 \mu A$; $V_{CC} = 1.65 \text{ V}$ to 5.5 V	-	-	0.1	V
		$I_O = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.45	V
		$I_O = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.3	V
		$I_O = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.4	V
		$I_O = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	V
		$I_O = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.55	V
I _I	input leakage current	$V_{CC} = 0 \text{ V to } 5.5 \text{ V}; V_{I} = 5.5 \text{ V or GND}$	-	±0.1	±5	μΑ
l _{OZ}	OFF-state output current	$V_{CC} = 3.6 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $V_O = 5.5 \text{ V or GND}$	-	±0.1	±10	μΑ
l _{OFF}	power-off leakage current	$V_{CC} = 0 \text{ V}$; $V_{I} \text{ or } V_{O} = 5.5 \text{ V}$	-	±0.1	±10	μΑ
I _{CC}	supply current	$V_I = 5.5 \text{ V or GND};$ $V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}; I_O = 0 \text{ A}$	-	0.1	10	μΑ
ΔI_{CC}	additional supply current	per pin; $V_{CC} = 2.3 \text{ V to } 5.5 \text{ V};$ $V_1 = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A}$	-	5	500	μΑ
Cı	input capacitance	$V_{CC} = 3.3 \text{ V}; V_I = \text{GND to } V_{CC}$	-	2.5	-	pF
T _{amb} = -	40 °C to +125 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.7	-	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	V
		V _{CC} = 4.5 V to 5.5 V	$0.7 \times V_{CC}$	_	_	V

1-of-2 non-inverting demultiplexer with 3-state deselected output

 Table 7.
 Static characteristics ...continued

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
V_{IL}	LOW-level input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	-	0.7	V
		V_{CC} = 2.7 V to 3.6 V	-	-	0.8	V
		V _{CC} = 4.5 V to 5.5 V	-	-	$0.3 \times V_{CC}$	V
V_{OH}	HIGH-level output voltage	$V_{I} = V_{IH}$ or V_{IL}				
		$I_{O} = -100 \mu A$; $V_{CC} = 1.65 \text{ V}$ to 5.5 V	V _{CC} - 0.1	-	-	V
		$I_O = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	0.95	-	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.7	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	1.9	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.0	-	-	V
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.4	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 100 \ \mu A; \ V_{CC} = 1.65 \ V \ to \ 5.5 \ V$	-	-	0.1	V
		$I_O = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.70	V
		$I_{O} = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		$I_O = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.60	V
		$I_O = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.80	V
		$I_O = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.80	V
I _I	input leakage current	$V_{CC} = 0 \text{ V to } 5.5 \text{ V}; V_I = 5.5 \text{ V or GND}$	-	-	±20	μΑ
l _{OZ}	OFF-state output current	$V_{CC} = 3.6 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $V_O = 5.5 \text{ V or GND}$	-	-	±20	μΑ
l _{OFF}	power-off leakage current	$V_{CC} = 0 \text{ V}$; $V_I \text{ or } V_O = 5.5 \text{ V}$	-	-	±20	μΑ
I _{CC}	supply current	$V_I = 5.5 \text{ V or GND};$ $V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}; I_O = 0 \text{ A}$	-	-	40	μΑ
ΔI_{CC}	additional supply current	per pin; $V_{CC} = 2.3 \text{ V to } 5.5 \text{ V};$ $V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A}$	-	-	5000	μΑ

^[1] All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 $^{\circ}C.$

1-of-2 non-inverting demultiplexer with 3-state deselected output

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 5.

Symbol	Parameter	Conditions		–40 °C to +85 °C			-40 °C to +125 °C		Unit
				Min	Typ[1]	Max	Min	Max	
t_{pd}	propagation delay	A to nY; see Figure 3	[2]						
		V_{CC} = 1.65 V to 1.95 V		1.0	5.1	10.0	1.0	12.5	ns
		V_{CC} = 2.3 V to 2.7 V		1.0	3.2	5.5	0.5	6.9	ns
		$V_{CC} = 2.7 \text{ V}$		1.0	3.2	5.4	0.5	6.8	ns
		V_{CC} = 3.0 V to 3.6 V		1.0	3.0	5.0	0.5	6.3	ns
		V_{CC} = 4.5 V to 5.5 V		1.0	2.3	3.8	0.5	4.8	ns
t _{en}	enable time	S to nY; see Figure 3	[3]						
		V_{CC} = 1.65 V to 1.95 V		1.0	5.8	11.0	1.0	13.8	ns
		V_{CC} = 2.3 V to 2.7 V		1.0	3.6	6.2	0.5	7.8	ns
		$V_{CC} = 2.7 \text{ V}$		1.0	3.6	6.0	0.5	7.5	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	3.1	5.2	0.5	6.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		1.0	2.4	3.6	0.5	4.5	ns
t _{dis}	disable time	S to nY; see Figure 3	[4]						
		V_{CC} = 1.65 V to 1.95 V		1.0	4.8	9.0	1.0	11.3	ns
		V_{CC} = 2.3 V to 2.7 V		1.0	2.7	5.3	0.5	6.6	ns
		$V_{CC} = 2.7 \text{ V}$		1.0	3.5	5.2	0.5	6.5	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	3.3	4.9	0.5	6.1	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		0.5	2.2	3.3	0.5	4.1	ns
C_{PD}	power dissipation capacitance	$V_I = GND$ to V_{CC} ; $V_{CC} = 3.3 \text{ V}$	[5]	-	28.8	-	-	-	pF

^[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

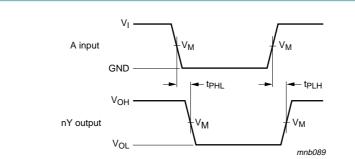
C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$

^[2] t_{pd} is the same as t_{PLH} and t_{PHL}

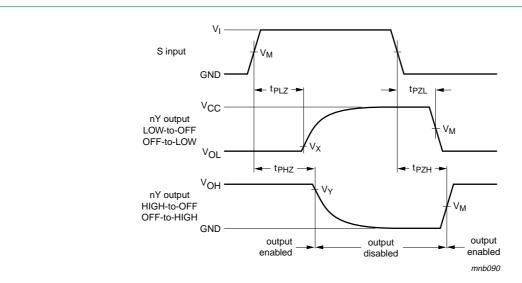

^[3] t_{en} is the same as t_{PZH} and t_{PZL}

^[4] t_{dis} is the same as t_{PLZ} and t_{PHZ}

^[5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

1-of-2 non-inverting demultiplexer with 3-state deselected output

12. AC waveforms



Measurement points are given in Table 9. VoL and VoH are typical output voltage levels that occur with the output load.

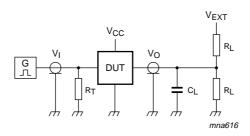
Fig 3. Input A to output Y propagation delays

Table 9. Measurement points

V _{CC}	V _M	Input		
		V _I	$t_r = t_f$	
1.65 V to 1.95 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.0 ns	
2.3 V to 2.7 V	$0.5 \times V_{CC}$	V_{CC}	≤ 2.0 ns	
2.7 V	1.5 V	2.7 V	≤ 2.5 ns	
3.0 V to 3.6 V	1.5 V	2.7 V	≤ 2.5 ns	
4.5 V to 5.5 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.5 ns	

Measurement points are given in $\underline{\text{Table 9}}$. V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

 V_X = V_{OL} + 0.3 V at $V_{CC} \geq$ 2.7 V.


 $V_X = V_{OL} + 0.15 \text{ V}$ at $V_{CC} < 2.7 \text{ V}$.

 V_Y = $V_{OH} - 0.3 \ V$ at $V_{CC} \ge 2.7 \ V.$

 $V_Y = V_{OH} - 0.15 \text{ V}$ at $V_{CC} < 2.7 \text{ V}$.

Fig 4. 3-state enable and disable times

1-of-2 non-inverting demultiplexer with 3-state deselected output

Test data is given in Table 10.

Definitions for test circuit:

 R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 5. Load circuitry for switching times

Table 10. Test data

V _{CC}	Input		Load	Load		V _{EXT}		
	VI	$t_r = t_f$	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
1.65 V to 1.95 V	V_{CC}	≤ 2.0 ns	30 pF	1 kΩ	open	GND	$2\times V_{CC}$	
2.3 V to 2.7 V	V_{CC}	≤ 2.0 ns	30 pF	$500~\Omega$	open	GND	$2\times V_{CC}$	
2.7 V	2.7 V	≤ 2.5 ns	50 pF	$500~\Omega$	open	GND	6 V	
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	$500~\Omega$	open	GND	6 V	
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	50 pF	$500~\Omega$	open	GND	$2 \times V_{CC}$	

1-of-2 non-inverting demultiplexer with 3-state deselected output

13. Package outline

Plastic surface-mounted package; 6 leads

SOT363

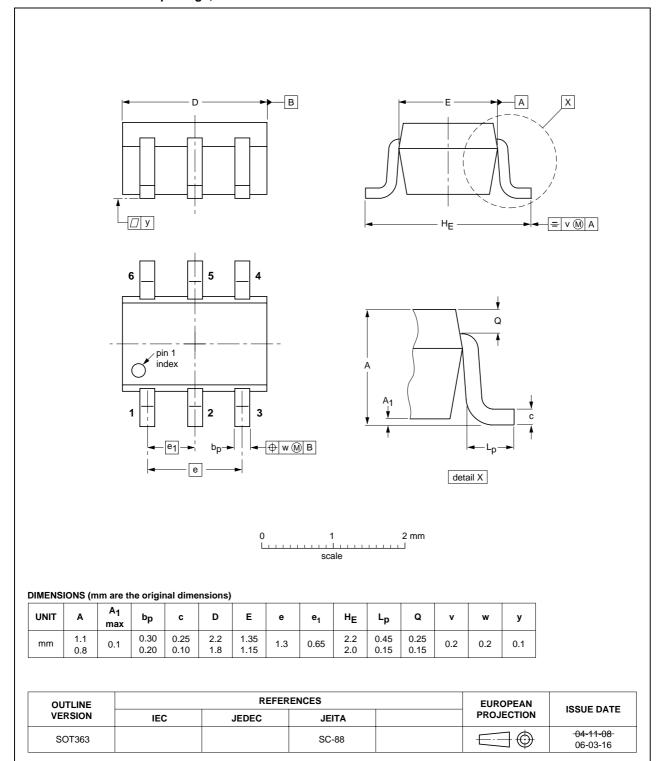


Fig 6. Package outline SOT363 (SC-88)

1-of-2 non-inverting demultiplexer with 3-state deselected output

Plastic surface-mounted package (TSOP6); 6 leads

SOT457

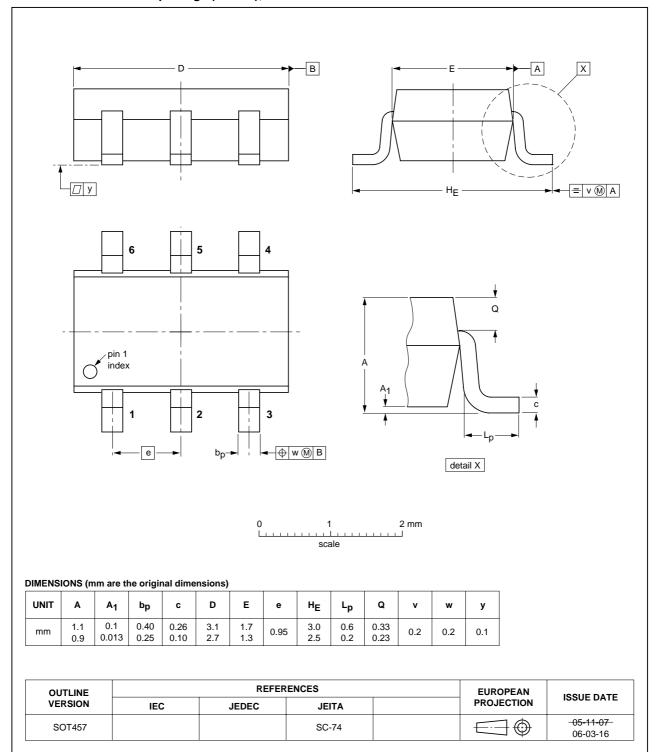


Fig 7. Package outline SOT457 (SC-74)

1-of-2 non-inverting demultiplexer with 3-state deselected output

14. Abbreviations

Table 11. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 12. Revision history

D	5.1	5.41	01	0		
Document ID	Release date	Data sheet status	Change notice	Supersedes		
74LVC1G18_2	20070830	Product data sheet	-	74LVC1G18_1		
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 					
	 Legal texts have been adapted to the new company name where appropriate. 					
	 In <u>Section 10 "Static characteristics"</u>, changed conditions for input leakage and supply current. 					
74LVC1G18_1	20030725	Product specification	-	-		

1-of-2 non-inverting demultiplexer with 3-state deselected output

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

1-of-2 non-inverting demultiplexer with 3-state deselected output

18. Contents

1	General description	1
2	Features	1
3	Ordering information	1
4	Marking	2
5	Functional diagram	2
6	Pinning information	2
6.1	Pinning	2
6.2	Pin description	2
7	Functional description	3
8	Limiting values	3
9	Recommended operating conditions	3
10	Static characteristics	4
11	Dynamic characteristics	6
12	AC waveforms	7
13	Package outline	9
14	Abbreviations 1	1
15	Revision history 1	1
16	Legal information 1	2
16.1	Data sheet status	2
16.2	Definitions 1	2
16.3	Disclaimers	
16.4	Trademarks1	2
17	Contact information 1	2
10	Contonts	2

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.